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Abstract 
Aim: To assess the long-term effectiveness of asthma treatments by comparing the utility of repeated measure models (RMM) 
and multilevel models (MLM) in analyzing longitudinal data of pulmonary function measured by forced expiratory volume in 
one second (FEV1), over an extended period. 
Subject and Methods: Seventy-two asthma patients were randomized into three groups: standard drug (a), test drug (c), and 
placebo (p), with 24 patients each. Forced expiratory volume (FEV1) was measured hourly for 8 hours post-treatment, plus a 
baseline measurement. Repeated measure models (RMM) and Multilevel models (MLM) were used to analyze forced 
expiratory volume (FEV1) changes over time. 
Results: The repeated measures model with an unstructured covariance matrix proved most effective, as indicated by Akaike 
Information Criterion (AIC) of 342.45, Bayesian Information Criterion (BIC) of 445, and corrected AIC (AICC) of 349.7. 
This model displayed a correlation decrease in forced expiratory volume (FEV1) from 0.7124 to 0.6429 over 8 hours, with a 
standard error of 0.1448. 
Conclusion: The study supports the use of repeated measures models with an unstructured covariance matrix for analyzing 
the efficacy of asthma treatments over time. This model effectively captured the dynamics of treatment effects on respiratory 
function, adhering to assumptions such as linearity, homoscedasticity, normality, and absence of significant outliers, thereby 
providing robust and reliable results. 
 
Keywords: longitudinal data; repeated measure models; multilevel models; unconditional mean; unconditional growth 
model; conditional growth 
 

Introduction 

The field of medical statistics plays a pivotal role in 
analyzing clinical trial data, offering insights into the 
effectiveness of medical treatments. This report is 
based on a dataset provided by (Littell et al., 2002 and 
Littell et al., 2006)   focusing on a study evaluating the 
effects of two different drugs on the respiratory 
function of asthma patients. The primary measure of 
interest is the forced expiratory volume (FEV) in 1 
hour, a critical indicator of pulmonary function. This 
involves a series of statistical methods, including the 
plotting of forced expiratory volume (FEV1) profiles 
over time, fitting mixed models using Statistical 
Analysis System procedure also known as SAS. 
 

Literature Review 

Modeling a longitudinal data on health outcomes in 
multilevel research settings are very challenging. The 

challenges are how to deal with changes in 
measurement over time, how to investigate temporal 
measurement invariance, how to model residual 
dependence due to the nested nature of longitudinal 
data, and how to find the unique correlation over 
time (Colin et al., 2022). However multilevel 
modelling is appropriate for analysis of data with a 
nested structure for example, patient (Level 1) nested 
within drugs (Level 2). This means ignoring such data 
can result in biased estimates of standard errors and 
subsequent increase in Type 1 error (Kessels et al., 
2019). Longitudinal data, comprising repeated 
measurements of the same individuals over time, arise 
frequently in cardiology and the biomedical sciences 
in general (Fitzmaurice, 2008). For example, patient 
and forced expiratory volume (FEV) measurement 
used repeated measurements of the respiratory ability 
of patients responding drugs to study changes in 
respiratory ability over an 8-hour study period.  
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In many research fields like education and clinical 
studies, data often have a hierarchical structure. For 
instance, in education, students are grouped within 
specific classrooms or under certain teachers, and 
these teachers are then part of larger school units. 
Similarly, in social services, individuals receiving 
services are grouped under particular social workers, 
who themselves are part of broader local civil service 
organizations (Huang, 2018). Conducting research at 
any of these levels while ignoring the more detailed 
levels (students) or contextual levels (schools) can lead 
to erroneous conclusions. As such, multilevel models 
have been developed to properly account for the 
hierarchical (correlated) nesting of data (McCoach, 
2010). 
Multilevel modeling (MLM) is a key analytical 
technique in educational research, especially when 
data is collected from students within various 
classrooms or schools, or from the same students at 
multiple points over time. This approach is crucial to 
avoid Type-1 errors, which are incorrect positive 
findings in statistical analysis. MLM provides a more 
accurate way to handle the complexities of such data 
structures (Heck and Thomas, 2020). These models 
are also tailored for data with hierarchical or clustered 
structures, commonly found across various research 
fields. For example, in educational research, this 
includes students within schools, in family studies, 
children within families, in medical research, patients 
within medical practices or hospitals, and in 
biological studies like analyzing dental issues with 
teeth grouped by different mouths. Such clustering 
can also stem from research designs, like multistage 
sampling in large-scale surveys for cost efficiency, 
resulting in stratified data, or in longitudinal studies 
where repeated measurements are viewed as nested 
within individual subjects. 
Repeated measures involve observing the same 
individuals’ multiple times under experimental or 
observational settings. The key characteristic of 
repeated measures data is that the measurements are 
not independent but are correlated because they come 
from the same subjects. This correlation must be 
accounted for in any statistical analysis to avoid biased 
or incorrect conclusions (Lindsey, 1999). 
The aim of this report is to apply repeated measure 
models and multilevel models on longitudinal dataset 
to understand the effectiveness of drugs on respiratory 
ability in asthma patients, and to evaluate and 
compare the strengths and weaknesses of each model 
by selecting the best model for the dataset. 

 

Data and Methods 

The dataset was provided in CSV file format and were 
collected by a pharmaceutical company which were 
analyse by (Littell et al., 2002 and Littell et al., 2006). 
We apply both multilevel model and repeated 
measure model on an extension from what was 
analyzed earlier. 
The methods used for the report, which entails the 
various procedures involved in multilevel models 
and repeated measure model for the longitudinal 
dataset below are the definition and their equations. 

Multilevel Models 

Unconditional Mean Model 

The Unconditional Mean Model, often referred to as 
the Null Model or Intercept-only Model, in the 
context of multilevel linear regression (mixed-effects 
models), is the simplest form of such a model (Wang 
et al., 2008). It includes only the intercept in the 
model without any predictors (fixed or random except 
for the random intercept). Using the proc mixed to fit 
the dataset with subject patients nested in drug and 
class of time, patients and drug. We look at the 
unconditional mean model. 
The unconditional mean model can be 
mathematically expressed as: 
𝐹𝐸𝑉𝑖𝑗 = 𝛾00 + 𝜇0𝑗 + 𝑒𝑖𝑗      (1) 
𝑒𝑖𝑗~𝑁(0, 𝜎2) 
𝜇0𝑗~𝑁(0, 𝜏00

2 ) 
 
i=index for FEV Measurement 
j=index for Patient   and  
γ_00=over mean measurement for FEV 

Unconditional Growth Model 

The Unconditional Growth Model is a type of 
multilevel model used to analyze change over time 
without including any predictors other than time 
itself (You and Sharkey, 2009). This model is used to 
assess how an outcome variable changes over time 
across different individuals or units. It is 
"unconditional" because it does not condition on any 
other covariates except for the time variable. 
The Unconditional Growth Model can be 
represented as follows: 
 

𝐹𝐸𝑉𝑖𝑗 = 𝑏0𝑗 + 𝑏1𝑗 ∗ 𝑇𝑖𝑚𝑒1𝑗 + 𝑒𝑖𝑗                    (2) 
𝑏0𝑗 = 𝛾00 + 𝜇0𝑗 
𝑏1𝑗 = 𝛾10 + 𝜇1𝑗 
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𝐹𝐸𝑉𝑖𝑗 = 𝛾00 + 𝛾10 ∗ 𝑇𝑖𝑚𝑒 + 𝜇0𝑗 + 𝜇1𝑗 ∗ 𝑇𝑖𝑚𝑒𝑖𝑗 +

𝑒𝑖𝑗                 (3) 
Where,  

𝑒𝑖𝑗~𝑁(0, 𝜎2) 
 

(
𝜇0𝑗

𝜇1𝑗
) ~𝑁 ((

0
0

) , (
𝜏00

2 𝜏01
2

𝜏10
2 𝜏11

2 )) 

Conditional Growth Model 

A Conditional Growth Model is also a multilevel 
modeling. It is an extension of the Unconditional 
Growth Model (Kuljamin et al., 2011). While the 
Unconditional Growth Model includes only time as a 
predictor to assess change over time, the Conditional 
Growth Model adds additional covariates or 
predictors to explain more of the variance in the 
outcome, both within individual patient (Level 1) and 
between individual patients (Level 2). We introduce 
the drug, and drug-time interaction in the model. 
The conditional Growth Model can be represented 
as follows: 

𝐹𝐸𝑉𝑖𝑗 = 𝑏0𝑗 + 𝑏1𝑗 ∗ 𝑇𝑖𝑚𝑒1𝑗 + 𝑒𝑖𝑗 
𝑏0𝑗 =  𝛾00 + 𝛾01 ∗ 𝐷𝑟𝑢𝑔𝑖𝑗 + 𝜇0𝑗 
𝑏1𝑗 =  𝛾10 + 𝛾02 ∗ 𝐷𝑟𝑢𝑔𝑖𝑗 + 𝜇1𝑗 

𝐹𝐸𝑉𝑖𝑗 = 𝛾00 + 𝛾01 ∗ 𝐷𝑟𝑢𝑔𝑖𝑗 + 𝜇0𝑗 + 𝛾10 ∗

𝑇𝑖𝑚𝑒𝑖𝑗 + 𝑇𝑖𝑚𝑒 ∗ 𝜇1𝑗 +  𝛾02 ∗ 𝐷𝑟𝑢𝑔𝑖𝑗 ∗ 𝑇𝑖𝑚𝑒𝑖𝑗 +

𝑒𝑖𝑗  
(4) 

Also,  
𝑒𝑖𝑗~𝑁(0, 𝜎2) 

(
𝜇0𝑗

𝜇1𝑗
) ~𝑁 ((

0
0

) , (
𝜏00

2 𝜏01
2

𝜏10
2 𝜏11

2 )) 

 

Repeated Measure Model 

Repeated measure models are particularly useful for 
studying correlation between measurements taken 
from the same individual over time. The general form 
that can be used when analyzing data like the 
effectiveness of asthma treatments over time is 
mathematically expressed as: 

𝛾𝑖𝑗 = 𝛽0 + 𝛽1 × 𝐷𝑟𝑢𝑔 + 𝛽2 × 𝑇𝑖𝑚𝑒

+ 𝛽3 × 𝐷𝑟𝑢𝑔 × 𝑇𝑖𝑚𝑒 + 𝑏𝑖 + 𝜀𝑖𝑗 
Where  𝛾𝑖𝑗 is the outcome measure for patient 𝑖 at 
time 𝑗, 𝛽1, 𝛽2 and 𝛽3 represent the effects of drug, 

time, and their interaction, respectively? And 𝑏𝑖 is the 
random effect accounting for individual differences. 
To select the best covariance structure, we consider 
Compound Symmetry (CS) with constant variance 
and equal correlation, Autoregressive (AR (1)) with 
decreasing correlation over time, Unstructured (UN) 
allowing different variances and covariance and the 
simple model (Wolfinger, 1993). We also look at 
fitting the models using each structure and compare 
using criteria like AIC or BIC, choosing the one with 
the lowest value for a balance between fit and 
simplicity. Also looking at the trend of the correlation 
over time. Proc mixed was used to fit the data with 
class containing patients, drugs and time. The model 
employed repeated as keyword to repeat the measure 
over time period with the subject patients nested in 
drug (Patient (Drug)). 
 

Criteria for Selecting (AIC and BIC) 

An examination and comparison of the Bayesian 
Information Criterion (BIC) and Akaike’s 
Information Criterion (AIC), two prevalent penalized 
model selection criteria are important in regression 
model to determine model fit. There are foundational 
differences and approaches of AIC and BIC to 
approximating distinct statistical measures. 
Similarities in the interpretation of their penalty 
terms are also very crucial. Their efficacy in selecting 
appropriate models is analyzed through simulated and 
real data sets on social mobility. The use of both AIC 
and BIC in longitudinal dataset is advocated for more 
informed model selection, particularly in identifying 
models that satisfy both criteria (Vrieze, 2012). 
Mathematically, AIC and BIC is express as 

𝐴𝐼𝐶 = −2𝐿𝐿 + 2𝑝                                           
𝐵𝐼𝐶 = 2𝐿𝐿 + log(𝑛) 𝑝 

𝐴𝐼𝐶𝐶 = −𝐴𝐼𝐶 + (2 ∗ 𝑃 ∗ 𝑃(𝑃 + 1))/(𝑛 − 𝑝 − 1) 
Where LL represent the Log Likelihood and p 
represent the number of parameters. 
 

Results and Discussion 

Result 

Proc sgpanel was used to fit the data paneled by Drugs 
(standard drug a, test drug c, and placebo p) and also 
group by patients nested with the drug. Below is the 
individual profile.
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Figure 1: Individual FEV1 profile 

 
From Figure 1, we examine the efficacy of three drugs 
on FEV1 levels over time. This figure contains 72 
patients randomized with 24 patients in each of the 
three study arms. These drugs were administered to 
each patient and a standard measure of respiratory 
ability called   FEV1 was measured in one hour over 
8 hours following the treatment which is a critical 
measure of lung function, with higher values 
indicating better respiratory capacity. The drugs are 
labeled as (a) the standard drug, (c) the test drug, and 
(p) the placebo. The standard drug (a) shows a 
significant increase in FEV1 levels, peaking around 
the midpoint of the time scale. This suggests that drug 
(a) has a substantial, yet temporary, effect on lung 
function, likely due to its pharmacodynamics 
properties. After reaching the peak, the FEV1 levels 
decline, which could be due to the drug's effects 
wearing off or the body's natural progression of the 
underlying condition. The test drug (c) demonstrates 
a more pronounced effect on FEV1, with an even 
higher peak than the standard drug (a). This indicates 
that drug (c) may have a stronger or more sustained 
action on the lungs. However, similar to the standard 
drug, the FEV1 levels eventually return towards 
baseline, reflecting the transient nature of the drug's 
efficacy or potential adaptive responses by the 
patients’ physiology. 

In contrast, the placebo (p) exhibits no significant 
change in FEV1 levels over time. The lack of 
improvement suggests that the placebo does not have 
a therapeutic effect on lung function. The flat trend 
line for the placebo serves as a control, indicating that 
the increases observed with drugs (a) and (c) are likely 
due to their active ingredients rather than 
psychological or spontaneous physiological changes. 
The individual patient lines within each drug category 
reveal variations in response to treatment. This 
heterogeneity underscores the complexity of treating 
respiratory conditions and the need for personalized 
medicine approaches. 
Overall, the graph suggests that while both the 
standard drug a, and test drugs c, can improve lung 
function, their effects are not long-lasting, and there 
is considerable variability in patient response. Further 
analysis would be required to understand the 
duration of the drugs' action and the implications for 
treatment regimens, such as the potential need for 
multiple dosing to maintain improved lung function. 
Also, proc sql was used to create the dataset which 
calculated the mean of FEV grouped by Tine and 
Drug. We then employed proc sqplot to allow the 
mean dataset created using sql to be plotted for each 
drug since each patient are nested within drugs.  
Below is the graph.
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Figure 2: Mean FEV1 plot 

 
The individual FEV1 profile plot in (Figure 1) and the 
mean FEV1 plot in (Figure 2) serve different 
analytical purposes. In Figure 1, individual patient 
data is plotted, which allows for the observation of 
each patient's reaction to the treatments over time, 
revealing the range of responses and potential 
outliers. This detail is crucial for understanding 
individual variations in drug efficacy and for 
identifying any adverse responses that may not be 
apparent in group averages. Conversely, Figure 2 
provides a summarized view by displaying the mean 
FEV1 values at each time point for the groups treated 
with drugs (a), (c), and placebo (p). At time = 0, the 
mean FEV1 levels for all treatments are identical, 
establishing a uniform baseline from which the 
efficacy of the drugs can be compared. This is crucial 
because it demonstrates that any subsequent changes 
are due to the drugs' effects rather than initial 
differences in lung function. 
At time = 1, the plot reveals that the test drug (c) 
induces a significant elevation in mean FEV1, 
surpassing the standard drug (a) and greatly 
outperforming the placebo (p). This suggests that drug 
(c) is the most effective at improving lung function 

within the first hour. The standard drug (a) also 
increases mean FEV1, but to a lesser degree, while the 
placebo (p) shows only a marginal increase, which 
could be attributed to a placebo effect or natural 
physiological variation. The mean FEV1 plot, with its 
focus on average responses, offers a more streamlined 
and arguably clearer comparison of the drugs' efficacy 
over time. However, it obscures the individual 
variability presented in Figure 1. Both plots together 
provide a comprehensive understanding of the drugs' 
performance, highlighting both the average 
effectiveness and the range of individual patient 
responses. In conclusion the individual plot of FEV 1 
in figure 1, talks about observation of each patient’s 
reaction to treatments over time while the mean FEV 
1 provides a summarized view by displaying the mean 
FEV1 values at each time point for the groups treated 
with drugs (a), (c), and placebo (p) respectively. 

Repeated Measure Mixed Model 

We consider the covariance and correlation estimates 
for FEV1 repeated measure for the unstructured and 
structured model. We also look at their various AIC 
AICC, BIC and -2Res Log Likelihood together with 
their F-test values. Below are the tables.

 
Table 1: REML Covariance and Correlation estimates for FEV1 repeated measure data Unstructured 

Time 0 Time 1 Time 2 Time 3 Time 4 Time 5 Time 6 Time 7 Time 8 
0.291 0.259 0.2748 0.2649 0.2412 0.294 0.2619 0.2597 0.246 

0.7124 0.4541 0.4587 0.4441 0.4154 0.4349 0.3934 0.3562 0.384 
0.7091 0.9474 0.5163 0.4808 0.4688 0.4943 0.4254 0.3992 0.4257 
0.6999 0.9393 0.9536 0.4923 0.4687 0.4843 0.4263 0.4021 0.4256 
0.6363 0.8773 0.9284 0.9506 0.4938 0.4837 0.4179 0.4023 0.4251 
0.717 0.849 0.905 0.908 0.9055 0.5779 0.4945 0.4643 0.495 

0.6932 0.8334 0.8453 0.8674 0.849 0.9286 0.4906 0.4454 0.4632 
0.6813 0.7479 0.7861 0.8109 0.8102 0.8642 0.8997 0.4994 0.4496 
0.6429 0.8033 0.8352 0.8552 0.8529 0.9181 0.9323 0.897 0.5031 

Variances on the diagonal, covariance above diagonal, correlations between diagonal. 
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Table 2: REML variance, covariance and correlation estimates for five covariance covariance structures for FEV1 
repeated measures. 

Time 0 Time 1 Time 2 Time 3 Time 4 Time 5 Time 6 Time 7 Time 8 
Simple 

        

0.4798 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 

CS 
        

0.4798 0.4008 0.4008 0.4008 0.4008 0.4008 0.4008 0.4008 0.4008 
1 0.8354 0.8354 0.8354 0.8354 0.8354 0.8354 0.8354 0.8354 

Toeplitz 
        

0.4357 0.3879 0.3696 0.3555 0.3328 0.3244 0.3134 0.3092 0.2877 
1 0.8904 0.8482 0.8159 0.7639 0.7446 0.7194 0.7096 0.6602 

AR(1) 
        

0.4413 0.3939 0.3517 0.3139 0.2803 0.2502 0.2234 0.1994 0.178 
1 0.8927 0.797 0.7115 0.6351 0.567 0.5062 0.4519 0.4034 

Variances and covariance in top line correlations in bottom line. 
 
Table 3: REML Akaike’s information criterion (AIC) and Schwarz’s Bayesian criterion (SBC) for five covariance 
structures  

AIC AICC BIC -2RLL 
Simple 1394.1 1394.1 1396.4 1392.1 

Cs 540.9 541 545.5 536 
Toeplitz 430.5 430.8 451 412.5 

UN 342.5 349.7 445 252.5 
Ar(1) 464 464 468.5 460.0 

 
Table 4: REML Values of F test for fixed effects for the five covariance structures 

Structure Name Time Drug Drug*Time 
Simple 7.67 24.02 1.18 

Compound Symmetry 46.58 3.13 7.14 
AR (1) 46.16 3.95 7.60 

Toeplitz 54.62 3.55 8.42 
UN 25.12 3.13 5.24 

 
Table 5: REML Model Selected output (UN Model) 

Effect DRUG time Estimate Stand. Error DF t Value Pr > |t| 
Intercept 

  
2.7204 0.1448 69 18.79 <.0001 

DRUG a 
 

0.1529 0.2048 69 0.75 0.4577 
DRUG c 

 
0.2837 0.2048 69 1.39 0.1703 

DRUG p 
 

0 . . . . 
time 

 
0 -0.0846 0.1122 69 -0.75 0.4535 

time 
 

1 0.09458 0.0888 69 1.07 0.2906 
time 

 
2 0.1604 0.08368 69 1.92 0.0594 

time 
 

3 0.1658 0.0775 69 2.14 0.0359 
time 

 
4 0.1392 0.07818 69 1.78 0.0795 

time 
 

5 0.03625 0.06156 69 0.59 0.5579 
time 

 
6 0.08333 0.05297 69 1.57 0.1203 

time 
 

7 0.0525 0.0656 69 0.8 0.4263 
time 

 
8 0 . . . . 

DRUG*time a 0 -0.1204 0.1587 69 -0.76 0.4505 
DRUG*time a 1 0.5208 0.1256 69 4.15 <.0001 
DRUG*time a 2 0.3783 0.1183 69 3.2 0.0021 
DRUG*time a 3 0.16 0.1096 69 1.46 0.1489 
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DRUG*time a 4 0.04917 0.1106 69 0.44 0.6579 
DRUG*time a 5 0.1592 0.08706 69 1.83 0.0718 
DRUG*time a 6 0.03792 0.07492 69 0.51 0.6144 
DRUG*time a 7 -0.0421 0.09277 69 -0.45 0.6515 
DRUG*time a 8 0 . . . . 
DRUG*time c 0 -0.2758 0.1587 69 -1.74 0.0866 
DRUG*time c 1 0.5863 0.1256 69 4.67 <.0001 
DRUG*time c 2 0.4558 0.1183 69 3.85 0.0003 
DRUG*time c 3 0.4013 0.1096 69 3.66 0.0005 
DRUG*time c 4 0.2942 0.1106 69 2.66 0.0097 
DRUG*time c 5 0.2029 0.08706 69 2.33 0.0227 
DRUG*time c 6 -0.0083 0.07492 69 -0.11 0.9118 
DRUG*time c 7 -0.0858 0.09277 69 -0.93 0.3581 
DRUG*time c 8 0 . . . . 

 

Multilevel model 

We estimate the covariance parameters of the UN model for all the multilevel models. 
Table 6: REML Covariance Parameter for Unconditional Mean Model 
 

Covariance Parameter Estimates 
Cov Parm. Subject Estimate Standard Z Val. Pr > Z    

Error 
  

UN (1,1) PATIENT(DRUG) 0.4183 0.07287 5.74 <.0001 
Residual 

 
0.1425 0.0084 16.97 <.0001 

 
Table 7: REML Solution for Fixed Effect  

Effect Estimate Standard DF t Value Pr > |t| Alpha Lower Upper   
Error 

      

Intercept 3.0384 0.07765 71 39.13 <.0001 0.05 2.8836 3.1932 
 
Table 8: REML Covariance Parameter for Unconditional Growth Model 

Cov Parm Subject Estimate Standard 
Error 

Z Value Pr Z 

UN (1,1) PATIENT(DRUG) 0.379 0.07179 5.28 <.0001 
UN (2,1) PATIENT(DRUG) 0.002199 0.00474 0.46 0.6427 
UN (2,2) PATIENT(DRUG) 0.001458 0.000617 2.36 0.0091 
Residual 

 
0.1279 0.008059 15.87 <.0001 

 
Table 9: REML Solution for Fixed Effect 

Effect Estimate Standard Error DF t Value Pr > |t| 
Intercept 3.1305 0.07704 71 40.63 <.0001 

time -0.02302 0.00706 575 -3.26 0.0012 
 
Table 10: REML Covariance Parameter for Conditional Growth Model 

Cov Parm Subject Estimate Standard 
Error 

Z Value Pr Z 

UN (1,1) PATIENT(DRUG) 0.3273 0.06402 5.11 <.0001 
UN (2,1) PATIENT(DRUG) 0.005893 0.00438 1.35 0.178 
UN (2,2) PATIENT(DRUG) 0.001313 0.0006 2.18 0.0146 
Residual   0.1279 0.00806 15.87 <.0001 
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Table 11: REML Solution for Fixed Effect 
Effect DRUG Estimate Standard DF t Value Pr > |t|    

Error 
   

Intercept 
 

2.7971 0.1251 69 22.36 <.0001 
DRUG a 0.4058 0.1769 69 2.29 0.0248 
DRUG c 0.5942 0.1769 69 3.36 0.0013 
DRUG p 0 . . . . 

time 
 

-0.00119 0.01198 573 -0.1 0.9206 
time*DRUG a -0.03148 0.01694 573 -1.86 0.0637 
time*DRUG c -0.03399 0.01694 573 -2.01 0.0453 
time*DRUG p 0 . . . . 

 

Interaction Effects 

Table 12: New Estimate for the interaction at Drug a and c 
Label Estimate Standard Error DF t Value Pr > |t| 

time at Drug = a -0.0327 0.01198 573 -2.73 0.0066 
time at Drug = c -0.0352 0.01198 573 -2.94 0.0034 
time at Drug = p -0.0012 0.01198 573 -0.1 0.9206 

 
Table 13: Comparison of the two models fitted for both Repeated and Multilevel 

Procedure Model Selected AIC 
 

AICC BIC -2RL Intercept 
Estimate 

Standard 
Error 

Repeated Measures Unstructured 342.5 349.7 445 252.5 2.7204 0.1448 
Multilevel Coefficient Conditional Growth model 806.4 806.5 815.5 798.4 2.7971 0.1251 

 
Discussion 

Covariance and correlations are presented above and 
below the diagonal, respectively, of the matrix in 
(Table 1). The correlations between FEV1 at Time = 
0 and later times are in the first column of the matrix. 
Correlations generally decrease from 0.7124 between 
FEV1 at Time = 0 and Time = 1 down to 0.6429 
between FEV1 at Time = 0 and Time = 8. Similar 
decreases are found between FEV1 at Time = 1 and 
later times, between FEV1 at Time = 2 and later times 
and so on. This decrease in correlation shows a trend 
in the repeated measure for a specific time period. 
The values of the correlations indicate that across the 
time interval the measurement of FEV 1 is unique 
across the time interval over the 8 hours. In summary, 
correlations between pairs of FEV1 measurements 
decrease with the number of hours between the times 
at which the measurements were obtained. This is a 
common phenomenon with repeated measures data. 
Moreover, magnitudes of correlations between FEV1 
repeated measures are similar for pairs of hours with 
the same interval between hours. Next, we look at the 
five models to check their trends in the correlation 
patterns in a table 2. 
The table above (Table 2) is a structured covariances 
which comprises of structured models namely Simple 

model, Compound Symmetry, Toeplitz and First 
order Autoregressive. The table is arranged in 
variance estimate at the top line and correlation 
estimate at the bottom line. We see that no 
correlation is assumed in simple model between 
repeated measures and the variance remains constant 
(0.4798) over the time interval. This is a very 
restrictive model and rarely used in practice for 
repeated measures because it does not account for 
within-subject correlations. Also, for Compound 
Symmetry, it assumes that every pair of repeated 
measures over time has the same correlation (0.8354), 
regardless of the time interval between them, and the 
variances are constant over time (0.4008). Also, 
Toeplitz assume that the correlation between two time 
points depends only on the time lag between them 
and not the specific times involved. The correlations 
decrease as the time lag increases (from 0.8904 to 
0.6602), which suggest that the influence of an 
observation diminishes as more time passes. The 
variances are not constant, varying from 0.4357 to 
0.2877, which indicates changing variability over time 
period. We again, see that AR (1) correlation 
estimates and Toeplitz correlation estimates shows a 
trend of decrease of correlation with length of time 
interval. This assumes that the correlation between 
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two time points decreases exponentially with the time 
lag, reflecting that only the previous time point has a 
significant influence on the current measurement. 
This is reflected in the pattern where correlations 
decrease more rapidly as the lag increases (from 
0.8927 to 0.4034). The variances, like in the Toeplitz 
structure, are not constant and decrease over time 
(from 0.4413 to 0.178). 
Looking at the table 3 containing the AIC, AICC, 
and BIC values for the various models, with 
conclusions about how well each model fits the data 
by selecting the model with the lowest AIC. In simple 
model, we see that it contains the highest AIC and 
BIC values (1394.1 and 1396.4, respectively), this 
model is the least effective at describing the data. It is 
too simplistic because it assumes there is no 
correlation between the FEV 1 measurements over 
the 8 hours, which is not usually the case in repeated 
measures. Again, the Compound Symmetry model 
shows much better AIC and BIC values (540.9 and 
545.5) than the Simple model, which means it fits the 
data better. However, it still assumes that all time 
intervals are equally correlated, which does not 
typically happen in real-world data. Also, the Toeplitz 
model gives lower AIC and BIC values (430.5 and 
451) compared to the CS model, indicating a better 
fit. This model assumes that FEV1 measurements 
closer in time are more related than those further 
apart. This is a more realistic approach and is less 
complex than the unstructured model. Again, the 
Unstructured model has the lowest AIC and BIC 
values (342.5 and 445), suggesting it fits the data the 
best and it treats each measurement as having a 
unique relationship with every other one over time 
intervals. Finally in the AR (1) model, AIC and BIC 
values (464 and 468.5) are higher than those for the 
Toeplitz and unstructured models but still lower than 
those for the Simple and CS models. It is a model that 
assumes that each measurement is mainly related to 
the one right before it, which simplifies things but 
might miss some nuances. We also look at the 
corresponding F-test values of the fixed solution for 
each of the models. 
From table 4, F values for tests of Time and DRUG ∗ 
Time interaction in the   simple structure model are 
excessively small due to the fact that Simple model 
underestimates covariance between observations far 
apart in time, and thereby overestimates variances of 
divergences between these observations. Results of F 
tests based on CS and AR (1) covariance are similar 
for fixed effects. These structures are adequate for 

modelling the covariance, and therefore produce valid 
estimates of error. Also, for Toeplitz and UN, their F 
test for Drug is similar but that of Time and 
Drug*Time are different. 
In conclusion we select the unstructured model from 
the repeated measure model because it has the lowest 
AIC of 342.5 and BIC of 445 values and also treat 
each measurement of FEV1 as a unique correlation 
over the time interval. Despite it huge parameters of 
45, it explains the within-subjects correlations of the 
patients nested in drugs in a unique trends over the 8 
hours’ time intervals.  
From table 5 above, using Drug p as reference point, 
we see that drug group a and c are not statistically 
significant with p-values 0.4577 and 0.1703 
respectively with their t-values of 0.75 and 1.39 which 
also yields same standard error of 0.2048. It appears 
that the only parameter estimates which is significant 
at that reference point is the intercept with p-value of 
0.0001 and standard error of 0.1448 associated with 
t-value of 18.79. This suggest that when the predictors 
are zero the mean measurement for FEV (baseline 
measurement) is 2.7204. It also means that on 
average, the FEV mean measurement is expected to 
increase by 2.7204 units when considering the 
intercept and when all other variables are at zero, 
which typically serves as a starting point for the model 
rather than a practical prediction. Again using time = 
8, as a reference point, we also noticed that at Time = 
0,  Time = 1,  Time =2, Time =4, Time = 5 , Time = 6 
and Time =7 the estimates are not statistically 
significant with p-value 0.4535, 0.2906, 0.0594, 
0.0795, 0.5579, 0.1203 and 0.4263 with the 
corresponding t-value of -0.75, 1.07, 1.92, 1.78, 0.59,  
1.57 and 0.08 which also yields a standard errors of 
0.1122, 0.08880, 0.08368 , 0.07818,  0.06156 , 
0.05297 and 0.06560.We see that the only time that 
is statistically significant occurs at Time =3, with p-
value of 0.0359 and t-value of 2.14 which also 
produces a standard error of 0.07750. This means 
that, on average, an increase of one unit in time is 
expected to result in a mean change of 0.1658 units 
in the FEV measurement. Also, using Time = 8 with 
Drug – Time interactions as reference point, we see 
that Drug – time interactions of at Time = 0, Time = 
3, Time = 4, Time = 5, Time = 6 and Time = 7 
estimates are not statistically significant with p-value 
of 0.4505, 0.1489, 0.6579, 0.0718, 0.6144 and 
0.6515 respectively. We also see that, only Drug - time 
interaction at Drug an at time = 1, time =2 are the 
only significant estimates with t-values of 4.15 and 
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3.20 and p-value of 0.0001 and 0.0021 respectively. 
Also produces a standard error of 0.1256 and 0.1183. 
This also means that, on average, an increase of one 
unit in Drug – time interaction   is expected to result 
in a mean change of 0.5208 and 0.3783 units 
respectively in the FEV measurement. 
Again, using Drug - time interaction at Drug c when 
Time = 8 as reference, we see that drug-time 
interaction at c when Time = 0, Time = 6, Time = 7 
are not statistically significant with p-values of 0.0866, 
0.9118 and 0.3581 respectively with t-values of -1.74, 
-0.11 and -0.93 which also produces standard errors 
0.158, 0.07492 and 0.9277 respectively. 
It appears that the only estimators that are statistically 
significant in the drug-time interaction are Time =1, 
Time = 2, Time = 3, Time = 4 and Time = 5 with p-
values 0.0001, 0.0003, 0.0005, 0.0097 and 0.0227 
with the corresponding t-value 4.67, 3.85, 3.66, 2.66 
and 2.33 with standard errors of 0.1256, 0.1183, 
0.1096, 0.1106 and 0.08706. This also means that, on 
average, an increase of one unit in Drug – time 
interaction   is expected to result in a mean change of 
0.5863, 0.4558, 0.4013, 0.2942 and 0.2029 units 
respectively in the FEV measurement. This means 
that taking the model that is not significant from the 
model will not affect the model predictions. In proc 
mixed, the statement MODEL includes intercept as 
default. Therefore, we can further request that 
intercept be random in the random statement.  There 
are different estimation methods that proc mixed can 
use. The default is residual (restricted) maximum 
likelihood and is the method that we use here. The 
option solution in the model statement gives the 
parameter estimates for the fixed effect. The option 
covtest requests for the standard error for the 
covariance-variance parameter estimates and the 
corresponding z-test. The option noclprint requests 
that SAS not print the class information. 
From Table 6, the estimated between variance, 𝜏00

2  
corresponds to the term intercept (baseline 
measurement) in the output of the covariance 
parameters estimates and the estimated with variance, 
𝜎2 corresponds to the term Residual in the same 
output section. From the table we see that the 
variance between patients nested in a drug in their 
FEV1 mean measurement, 𝜏00

2 = 0.4183 which 
yields standard deviation of 0.07287 and it significant 
at p-value of 0. 0001. Also, we notice that variance 
within the residuals, 𝜎2 = 0.1425 which also 
produces a standard error of 0.008395 which is also 
significant at p-value =0.0001. 

To measure the magnitude of the variation among 
patients nested in drug in the mean FEV level we 
calculating the ICC by: 

𝐼𝐶𝐶 =
𝜏00

2

𝜎2+𝜏00
2 =

0.4183

0.1425+0.4183
= 0.7459 ≈ 75%  

This tells us about the portion of variation that occurs 
between patients nested in a drug in their mean FEV 
measurement levels. 
To measure the magnitude of the variation among 
patients in their mean FEV levels, we can calculate the 
plausible values range for these means, based on the 
between variance, we obtained from the model the 
range of values that lies between the means of the FEV 

measurement, thus 3.0384 ± 1.96(0.4183)
1

2 =
(1.771, 4.306) as the interval. 
From table 7, the coefficient for the constant is the 
predicted FEV1 measurement when all predictors are 
0, so when the average patients time = 0, the FEV1 
(baseline measurement) is predicted to be 3.0384.  
This means that on average, the FEV mean 
measurement is expected to increase by 3.0384 units 
when considering the intercept and when all other 
variables are at zero, which typically serves as a starting 
point for the model rather than a practical prediction. 
This estimate yields a standard error of 0.07765 with 
p-value of 0.001 and lies between (2.8836, 3.1932). 
Now from table 8, we consider the covariance 
parameter estimates, which tell us how much these 
intercepts and slopes vary across patients. We may 
rewrite it as: 

(
𝜏00

2 𝜏01
2

𝜏10
2 𝜏11

2 ) = (
0.3790 0.002199

0.002199 0.001458
) 

From the matrix above, the 
covariance
 τ01

2  and τ10
2   estimates are denoted with UN(2,1) 

is 0.002199 with standard error 0.004740 that yields 
a p-value of 0. 6427.This is saying that there is no 
evidence that the effect of time depending upon the 
average forced expiratory volume (FEV) in the 
patients. The covariance 𝜏00

2  estimate denoted with 
UN (1,1) correspond to the intercept which is 0.3790 
and it is significant at p-value of 0.0001 with standard 
error of 0.07179. 
The parameter corresponding to UN (2,2) is the 
variability in slopes of time. The estimate is 0.001458 
with standard error 0.000617. Which yields a p-value 
of 0.0091 for 1-tailed test. 
The test being significant tells us that we cannot 
accept the hypothesis that there is no difference in 
slope among patients nested in drug. 
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Noticed that the residual variance is now 0.1279, 
comparing with the residual variance of 0.1425 in the 
one-way ANOVA with random effect model. The 
variance component representing variation between 
patients decreases greatly (from 0.4183 to 0.379). This 
means that the time variable explains a small portion 
of the patient-to-patient variation in mean forced 
expiratory volume (FEV) measurement. More 
precisely, the proportion of variance explained by 
time is  
(0.4183−0.3790)

0.4183
= 0.09395 ,  

that is about 9.4% of the explainable variation in 
patient mean forced expiratory volume (FEV) 
measurement is explained by time. The variance 
within patient (the residual) changes slightly also from 
0.1425 in unconditional mean model to 0.1279 in in 
the unconditional growth model. 
From Table 9, we see that  95% pausible value range 
for the patients mean is between, 3.1305 ±

1.96(0.379)
1

2 = (1.924, 4.337). And the 95% 
pausible value range for the Time - Slope mean is 

−0.02302 ± 1.96(0.001458)
1

2 = (−0.0979,
0.0518). This means that on average, the forced 
expiratory volume (FEV) mean measurement is 
expected to increase by 3.1305 units when 
considering the intercept and when all other variables 
are at zero, which typically serves as a starting point 
for the model rather than a practical prediction with 
p-value of 0.0001 and yields standard deviation of 
0.07704 
Also, on average, an increase of one unit in time is 
expected to result in a mean decrease of 0.02302 units 
in the forced expiratory volume (FEV) measurement 
with p-value of 0.0012 and yields a standard error of 
0.00706. 
From table 10 we consider the covariance parameter 
estimates, which tell us how much these intercepts 
and slopes vary across patients. We may rewrite them 
again as: 

(
𝜏00

2 𝜏01
2

𝜏10
2 𝜏11

2 ) = (
0.3273 0.005893

0.005893 0.001313
) 

 
The covariance 𝜏01

2  estimate denoted with UN (2,1) is 
0.005893 with standard error 0.00438 that yields a p-
value of 0. 178.This is also saying that there is no 
evidence that the effect of predictors depending upon 
the average forced expiratory volume (FEV) in the 
patients. From table 10 again, we see that, the 
intercept variance UN (1,1) is significant with p-value 
< 0.0001 which yield a standard error of 0.06402.  UN 

(2,1) is not statistically significant with p-value 0.178 
and UN (2,2) is significant with p-value 0.0146 which 
also yield a p-value of 0.00806. 
From table 11, using Drug P as a reference, we see 
that the intercept is significant with p-value of 0.0001 
which yields a standard error of 0.1251. This means 
that on average, the forced expiratory volume (FEV) 
mean measurement is expected to increase by 2.7971 
units when considering the intercept and when all 
other variables are at zero, which typically serves as a 
starting point for the model rather than a practical 
prediction. We also see that Drug a and c are also 
statistically significant with p-values of 0.0248, 0.0013 
which yields same standard error of 0.1769. This also 
tell us that on average, an increase of one unit in drug 
group a and c are expected to result in a mean change 
of 0.0.4058 and 0.5942 units in the forced expiratory 
volume (FEV) measurement. Again, using 
Time*Drug interaction at p as reference, we see that 
time, and drug – time interaction at a are not 
statistically significant with p-value of 0.9206 and 
0.0637 respectively. We also see that only time – drug 
interaction at c is statistically significant with p-value 
of 0.0453 which yields a standard error of 0.01694. 
This means that on average, an increase in one unit 
in drug-time interaction is expected to result in a 
decrease in the mean change by 0.03399 units in the 
forced expiratory volume (FEV) measurement. 
From table 12, we estimate a new drug – time 
interaction at a specific time. These estimates were 
added to the proc mixed procedure. This is to validate 
that though drug-time interaction at the repeated 
measure analysis is not significant but at a specific 
time it becomes significant. We see that, at a specific 
time-drug interaction, thus time at drug = a, the 
estimate becomes significant with p-value of 0.0066 
which yields a standard error of 0.01198 as compared 
to the previous repeated measure whose p-value was 
0.0637 with the corresponding standard error of 
0.01694. This means that on average, an increase in 
one unit in drug-time interaction at specific time is 
expected to result in a decrease in the mean change by 
0.0327 units in the forced expiratory volume (FEV) 
measurement. We also see that time-drug interaction 
at c was again significate with p-value = 0.0034 with 
standard error 0.01198 as compared to the previous 
in the repeated measure. We see that the standard 
error produced at this time became very small as 
compared to the repeated measure. We also see that 
time-drug interaction at p, is still not significant 
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because it was served as reference point in the 
repeated measure. 
From table 13, we compare the final model and select 
which model best explains the dataset. Repeated 
measures (Unstructured) were the model selected 
because it has AIC of 342.5, AICC of 349.7, BIC of 
445 and the -2RLL of 252.5 which is the lowest 
among the all the models. This suggests that, in terms 
of the balance between model complexity and 
goodness of fit, this model is preferable. 

Model Assumptions 

Linearity and Homoscedasticity 

In the analysis, the residual and the studentized 
residual shows that there is no clear pattern, non-
linear shape and no major fan shape which suggests 
that the linearity and homoscedasticity assumptions 
are not grossly violated. However, there seems to be a 
slight fan shape, with the variance of residuals 
increasing as the predicted mean increases, which 
could indicate potential heteroscedasticity, however 
this does not affect the model predictions. 

Normality 

For normality, both the residual for forced expiratory 
volume and the studentized residual shows that the 
residual is approximately normal, looks fairly 
symmetrical and bell-shaped, which suggest that the 
model is good. The Q-Q plots from both the residual 
for forced expiratory volume and the studentized 
residual however, deviates from the straight line in the 
tails, especially in the lower tail, suggesting that the 
residuals may have a slight departure from normality, 
with potentially heavier tails than the normal 
distribution would predict but again this does not 
affect the mode predictions. 

Influence and Outliers 

It appears that across all plots, there are no systematic 
patterns in the residuals, which would suggest non-
linearity. Although, there are outliers present in all 
plots, which could potentially influence the model's 
estimates but these influence does not affect the 
model for predictions. In conclusion, residuals' 
distribution suggests that the model assumptions of 
homoscedasticity and linearity are not grossly 
violated. However, the presence of outliers indicates 
that some data points do not fit the model well. These 
outliers might warrant further investigation to 
determine if they are influential points or if there's a 
substantive reason for their divergence from the 
model's predictions. It would also be important to 
assess whether these points are due to measurement 

error, data entry error, or if they represent true 
variability in the response to treatment. 
 

Conclusion 

In conclusion, the analysis of forced expiratory 
volume (FEV1) measurements across different drug 
treatments and time points presents distinct 
methodological considerations. The Unstructured 
(UN) Repeated Measures model offers detailed 
insights by allowing unique correlations between each 
time point, making it ideal for capturing individual 
variability in response to treatments. Its flexibility is 
advantageous when the research focus is on the 
nuanced patterns of change in forced expiratory 
volume (FEV1), and the dataset is robust enough to 
support complex modeling without overfitting 
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