Review Article

Open d Access

A Systematic Review on Acute Kidney Injury Following Cardiac Surgery: Clinical Outcomes with Preventive Strategies Over the Decades

Chandana Sree Madala¹, Mohammed Quader Naseer², Kanakath Sanvi^{3*}, Krutika Mahendra Gohil⁴, Sinthujaa Velmurugan⁵, Alisha Lakhani⁶, Kaarvi Khullar⁷, Richard Paul³

¹Narayana Medical College and Hospital, Nellore, Andhra Pradesh, India

²Ayaan Institute of Medical Sciences, Hyderabad, Telangana, India.

³Al Azhar Medical College and Superspeciality Hospital, Kerala, India.

⁴HBT Medical College and Dr. Rustom Narsi Cooper Municipal General Hospital, Mumbai, India.

⁵Mahatma Gandhi Medical College and Research Institute, Puducherry, India.

⁶Shantabaa Medical College, Amreli, Gujarat, India.

⁷Government Medical College, Gondia, Maharashtra, India.

*Corresponding author: Sinthujaa Velmurugan.

Abstract

Introduction: Acute kidney injury (AKI) is a common complication following cardiac surgery, contributing to increased morbidity and mortality. This systematic review aims to comprehensively evaluate the incidence, risk factors, and clinical outcomes associated with AKI post-cardiac surgery.

Methods: A systematic search of electronic databases was conducted to identify relevant studies published. Studies reporting on AKI incidence, risk factors, and clinical outcomes in adult patients undergoing cardiac surgery were included. Data were extracted and synthesized following PRISMA guidelines.

Results: A total of 23 studies were included in the review. AKI was associated with increased short and long-term morbidity and mortality, prolonged hospital stays, and higher healthcare costs. Encouraging outcomes were noted when dexmedetomidine, a highly selective α 2-adrenergic receptor agonist, was administered during surgery. Two promising nonpharmacological strategies to reduce CSA-AKI are the use of a revolutionary renal guard (RG) system and the introduction of a KDIGO-based treatment bundle. Teprasiran, a new P2Y12 receptor antagonist, was found to significantly reduce the frequency and severity of AKI. The results of this review further highlight the significance of customized preventative measures and risk stratification.

Conclusion: Acute kidney injury is a significant complication following cardiac surgery, with considerable variability in its incidence and associated risk factors. Implementation of preventive strategies is crucial in mitigating AKI-related morbidity and mortality. Further research is warranted to optimize patient outcomes and healthcare resource utilization in this population.

Keywords: acute kidney injury; dexmedetomidine; cardiac surgery; preventive measure

Introduction

Acute Kidney Injury (AKI) is a prevalent and frequently encountered complication following cardiac surgery, presenting a significant challenge to patient recovery and prognosis owing to its association with amplified morbidity, mortality, and prolonged hospital stays. CSA-AKI is characterized by an abrupt worsening in kidney function following cardiac surgery as demonstrated by a reduction in the glomerular filtration rate. These patients often have risk factors for kidney disease, such as diabetes, hypertension, and hypercholesterolemia. In addition, cardiac surgery is a major surgical procedure which may contribute to an increased risk for AKI. Susantitaphong et al reported that CBP-associated AKI was associated with an 8-fold increase in mortality in a subgroup analysis within a global incidence study of AKI, based on results from 23 studies [1]. A recent meta-analysis reported that irrespective of the diverse criteria used to define AKI, its occurrence following cardiac surgery is consistently correlates with a 2-4 times higher likelihood of early mortality among patients [2]. The RIFLE criteria defined AKI by a 25% reduction in GFR (this was

equated with a 50% increase in creatinine level or low urine output [3]. The AKIN definition reserved the urine output criterion of the RIFLE definition, dropped the change in GFR per se, and altered the creatinine definition such that a small increase of 0.3 mg/dL also could diagnose AKI. The AKIN definition also reduced the time over which AKI was to be diagnosed from 7 days to 48 hours [4]. The KDIGO definition united RIFLE and AKIN by allowing the relative change of 50% in creatinine level to be over 7 days, whereas absolute change is restricted to 48 hours [5].

The intricate interplay of multifactorial mechanisms, including reduced cardiac output, ischemiareperfusion injury, renal vasoconstriction, nephrotoxic results like Cardiopulmonary bypassinduced systemic inflammatory response leading to interstitial inflammation and coagulopathy, and patient specific risk factors, contributes to the development of AKI in this setting [6]. Despite advancements in surgical techniques and perioperative care, the incidence of AKI following cardiac procedures remains substantial, impacting patient outcomes, length of hospital stays, and healthcare costs. Studies have reported the risk factors for AKI, for example, female gender, reduced left ventricular function, the presence of congestive heart failure, diabetes, chronic obstructive pulmonary disease, and elevated preoperative serum creatinine [7]. A meta-analysis of 307 studies involving 1200 patients, reported that plasma NGAL (pNGAL) can be considered to be a sensitive and specific early marker of AKI and can be detected up to 48 h before a diagnostic rise in serum creatinine [8]. Greenwood et al reported that pulse wave velocity, a non-invasive measurement tool to assess arterial stiffness, has been shown to predict kidney disease progression, and cardiovascular and all-cause mortality in patients with chronic kidney disease [9].

CSA-AKI increases the risk of death during admission, which can increase to 50% when there is a need for RRT. In 2017, Legouis D et al. studied a cohort of 4,791 patients and found that the risk of CKD was higher in patients who had experienced CSA-AKI than in the AKI-free population [10]. In the absence of precise biomarkers, it seems that even a mild instance of AKI can lead to a poorer prognosis concerning the likelihood of developing CKD and long-term survival in patients. Therefore, it might be more beneficial to prevent, and detect AKI risks rather than focusing solely on a cure. This becomes especially crucial when taking into account the 2009 NCEPOD, which reported that 30% of cases of AKI were preventable and identified a deficiency of care in 50% of cases [11]. Despite published studies detailing the link of CBP-associated AKI and unfavorable outcomes, there have been few attempts to systematically summarize the prognostic consequences of AKI. This review aims to explore the multifactorial etiology, risk factors, and preventive strategies associated with AKI post-cardiac surgery. Understanding these intricate facets is vital in developing targeted interventions to mitigate the incidence of AKI, ultimately benefitting patient care and reducing the load on healthcare systems.

Methodology

This Comparative study was performed in accordance with published guidelines for systematic review, analysis, and reporting for meta-analysis of Observational studies.

Literature Search Strategy

A comprehensive search was done by the investigators in PubMed, Google Scholar and Scopus using appropriate subject headings and keywords. After an extensive search process, studies from all over the world focusing on Preventive Strategies of AKI and their outcomes were selected. The reference lists of included studies and relevant reviews were manually searched to avoid missing relevant studies. All identified articles were systematically assessed using the inclusion and exclusion criteria. All the selected studies were carefully reviewed once again individually by the team of investigators and then 23 studies matching inclusion criteria were shortlisted for the final comparison. Investigators independently reviewed the retrieved articles and evaluated the quality assessment. All data regarding the articles retrieved were entered into Excel software.

Inclusion and Exclusion Criteria

Various articles related to Acute Kidney Injury following Cardiac Surgery were searched through PubMed, Google Scholar, and Scopus. Studies concentrating on preventive strategies of Acute Kidney Injury (AKI) were shortlisted.

The following articles were excluded from the study: 1) Abstracts 2) Studies in non-English Language Literature 3) Animal studies 4) Studies published before 2000. All other standard studies in English Literature dated from 2000 to 2023 were included. All analyses were based on previously published studies; thus, no ethical approval and patient consent are required. The reviewers performed independent manual screening of all the articles by firstly the titles/abstracts and secondly the full texts. Besides, other relevant literature and references of the included studies were also manually screened.

Data Extraction

Four independent review authors extracted relevant study characteristics and outcomes from the 23 included studies using a standardized and piloted data extraction form. The information collected from each study included: Name of the Study, Author details, Citation, year of Publication, Study design, Methodology used, Results, Preventive strategy used, Conclusion and Limitations of the study. The collected data were thoroughly reviewed again, and the information was cross verified again to prevent any mistakes during data processing. All the collected data were pooled together and the preventive strategies of AKI from all the studies were analyzed and reviewed.

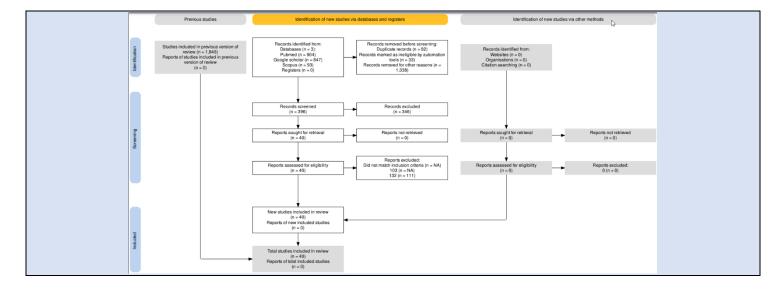
Quality Assessment

Two independent reviewers assessed study quality according to criteria outlined by Downs and Black using the 27-point checklist included within 5 main sections.

The five sections include questions about:

- 1. Reporting (10 items);
- 2. External validity (3 items);
- 3. In- ternal validity/Bias (7 items);
- 4. Confounding (selection bias) (6 items);
- 5. Power of the study (1 item).

Studies were graded as excellent quality if their score was between 24-28 points, good if between 19-23 points, fair if between 14-28 points and poor if less than 14 points.


Outcome Measures

The primary outcome measure for this systematic review is the incidence of acute kidney injury (AKI) following cardiac surgery, categorized according to severity stages outlined in the kidney disease: Improving Global Outcomes (KDIGO) guidelines. Secondary outcome measures include evaluating risk factors associated with AKI, assessing preventive strategies' efficacy, analyzing short and long-term clinical outcomes post-AKI, exploring the utility of biomarkers, assessing healthcare resource utilization, documenting adverse events, and performing subgroup analyses to identify potential sources of heterogeneity.

Results

Screening

Of 1849 potential studies, 1338 were excluded because they did not assess patients or had titles and abstracts that were not related to the purpose of this review, 82 were excluded because they were duplicates and 33 records were marked as ineligible by automation tools. After careful screening of the remaining 396 articles, 363 were excluded since they fail to meet the inclusion criteria. The 23 retrieved studies were assessed for eligibility. This review is based on the remaining 23 studies that fully met the inclusion criteria.

BioRes Scientia Publishers

Table 1: Characteristics of The Studies Included in The Systematic Review.

S	e 1: Characte Author	Year	Type of study	Sample	Duration	Country	Interventions	Outcomes	Results
No	T Rutifion			size	of study			outcomes	results
1	David M Axelrod [12]	2016	RCT	144		USA	Total-2 groups Aminophylline (n=72) Placebo (n=72)	The primary outcome measure was the development of any AKI, defined by serum creatinine criteria. Secondary outcomes included severe AKI, time to extubating, fluid overload, fluid balance, urine output, bioelectrical impedance, and serum neutrophil gelatinase- associated lipocalin.	This study found no evidence to support the use of postoperative aminophylline in preventing AKI in children recovering from cardiac surgery with cardiopulmonary bypass.
2	Pegah Eslami [13]	2021	Double blinded RCT	111	7 months	Iran	Total-2 groups Vit D group (n=50) Control (n=61)	High-dose administration of Vit D may improve the anti- inflammatory state before and after the surgery. However, Vit D pre-treatment was unable to decrease the incidence of AKI and the urinary level of renal biomarkers.	In this study, there was no difference in the occurrence of postop AKI between the Vit D and control groups. However, both urinary levels of IL-18 and kidney injury molecule-1 were elevated after surgery (p \leq 0.001, for both). Additionally, serum IL-10 levels were increased 3 days after Vit D supplementation (p = 0.001), which was higher than the control group levels post-operation (p \leq 0.001) and the subsequent day (p = 0.03).
3	Peter A McCullough [14]	2016	RCT	231		USA & Denmark	Total-4 groups Placebo (n=51) ABT 719- 800 dose (n= 54) ABT 719- 1600 dose (n=55) ABT 719- 2100 dose (n=49)	ABT-719 treatment did not demonstrate efficacy in reducing AKI incidence or influencing biomarker levels in patients undergoing cardiac surgery with cardiopulmonary bypass.	The percentage of patients who developed stage 3 AKI appeared numerically lower in all ABT-719 groups (5.5% for 800, 5.1% for 1600, and 5.4% for 2100 μ g/kg) compared to the placebo arm (12.1%), these differences were not statistically significant.
4	Madhav Swaminathan [15]	2018	RCT	135		North America	Total-2 groups AC 607 (n=68) Placebo (n=67)	The administration of allogeneic mesenchymal stem cells after cardiac surgery	The primary analysis of the study found no significant difference in the time to recovery of kidney function between the

5	Mira Küllmar	2020	Observational	380		UK	Total -2 groups	within 48 hours of AKI onset did not decrease the time to recovery of kidney function, provision of dialysis or mortality.Theprimary	AC607 and placebo groups. Secondary analysis, including all-cause mortality or provision of dialysis, did not differ significantly between the groups. Twelve patients in the AC607 group and five in the placebo group received dialysis within 30 days of treatment, and 11 patients in the AC607 group and five in the placebo group died within this timeframe. By the end of the study follow-up period, 12 patients in the AC607 group and six in the placebo group had died. The single-centre
5	Mira Küllmar ¹ 16]	2020	Observational study f/b RCT	380		UK	Total -2 groups Observational group (n=100) Interventional trail (n=100)	The primary endpoint is the compliance rate with the trial protocol. The secondary endpoints including the occurrence of AKI, renal recovery, use of renal replacement therapy, mortality, and safety outcomes.	The single-centre randomized controlled PrevAKI trials demonstrated that the renal biomarkers [TIMP-2] *[IGFBP7] could identify high-risk AKI patients, and the implementation of the CV surgery AKI bundle reduced AKI occurrence by 15%.
6	Anna J Wetz [17]	2015	Observational trail	342		Germany	Total -2 groups NaHCO3 (n= 174) Control (n= 168)	The study observed a significant reduction in the overall incidence of AKI in patients who received sodium bicarbonate treatment. →Control group: 50% incidence of AKI →NaHCO3 group: 35.6% incidence of AKI	Treatment with sodium bicarbonate had a notable impact on reducing the incidence of AKI, particularly in low- risk patients undergoing cardiovascular surgery. The benefits were significant in patients categorized as low risk according to Thakar points (<3). Sodium bicarbonate can be used as a preventive measure for AKI, with considerations for risk stratification among patients.
7	Frederic T Billings IV [18]	2016	Double blinded RCT	615	years	USA	Total -2 groups and 2 subgroups each. Statin-naïve group: →Atorvastatin (n=102)	Among patients naive to treatment with statins or in patients already taking a statin who are undergoing	Among patients naive to statin treatment (n = 199), AKI occurred in 22 of 102 (21.6%) in the atorvastatin group vs

,			nogy and Car	0,			13311.2037-4073		Scientia i ublishers
							 →Placebo (n=97). <u>Already on Statin:</u> →Atorvastatin (n=206). →Placebo (n=210) 	cardiac surgery, high-dose perioperative atorvastatin treatment compared with placebo did not reduce the risk of AKI.	13 of 97 (13.4%) in the placebo group. →Among patients already taking a statin (n = 416), AKI occurred in 42 of 206 (20.4%) in the atorvastatin group vs 47 of 210 (22.4%) in the placebo group. However, among statin-naïve patients, there was a statistically significant increase in serum creatinine concentration in the atorvastatin group compared to the placebo group.
8	Jin Sun Cho [19]	2016	RCT	200	3 years	South Korea	Total -2 groups Dexmedetomidine (n=100) Placebo (n=100)	Perioperative infusion of dexmedetomidine effectively lowered both the incidence and severity of AKI and improved overall outcomes in patients undergoing valvular heart surgery, all without any untoward hemodynamic side effects.	The incidence of AKI, as per AKIN criteria, was lower in the treatment group compared to the control group, with rates of 14% and 33%, respectively. Additionally, the dexmedetomidine group exhibited a significantly reduced incidence of a composite of major morbidity endpoints, with rates of 21% compared to 38% in the control group. Furthermore, dexmedetomidine group experienced a significantly shorter length of stay in ICU, with a median duration of 2-3 days, compared to 2-4 days in the control group.
9	Franziska Grundmann [20]	2018	RCT	76	3 years	Germany	Total -2groups CR group (n=36) Control group (n=40)	The initial results regarding the rise in creatinine levels within the first 24 hours after cardiac surgery were disappointing, the study found positive outcomes at later time, suggest that short- term calorie restriction could have a protective effect in patients at risk for AKI.	The incidence of acute kidney injury (AKI) was reduced by 5.8% in the CR group compared to the control group. CR prevented a rise in median creatinine at 48 hours, observed in male patients and with BMI>25. This benefit persisted until discharge, with median creatinine decreasing in the CR group while increasing in the control group.

10	Thomas Osterholt [21]	2022	Double blinded RCT	115	Germany	Total -2 groups Low S group (n=56) Control (n=59)	The outcome of the study suggests that the Low Sulphur diet did not demonstrate a Reno protective effect.	The incidence of AKI within 72 hours after surgery was similar between the Low S group and the control group (23% vs. 16%; P=0.38). Therefore, while SAA restriction was feasible in the clinical setting, it did not demonstrate protective properties against AKI following cardiac surgery.
11	Alexander Zarbock [22]	2021	RCT	278	Europe	Total -2 groups Intervention group (n=136) Control group (n=142)	Implementing a treatment bundle based on KDIGO guidelines is achievable across multiple countries. Additionally, the intervention group experienced a notable decrease in moderate to severe AKI.	Within the intervention group, 65.4% of patients received the complete bundle, compared to only 4.2% in the control group, representing a substantial absolute risk reduction of 61.2%. Although overall rates of kidney injury were similar between the groups, the intervention group had notably fewer cases of moderate to severe kidney injury (14.0% vs. 23.9%).
12	Michael Haase [23]	2013	RCT	350	Germany	Total -2 groups NaHCO3 (n=174) NaCl control (n=176)	The primary outcome was the proportion of patients developing AKI. Secondary outcomes included assessing the magnitude of acute tubular damage measured by urinary neutrophil gelatinase- associated lipocalin (NGAL), initiation of acute renal replacement therapy, and mortality.	NaHCO3 infusion increased urinary pH but did not reduce the incidence of AKI; instead, more patients receiving NaCHO3 developed AKI compared to the control group and patients receiving NaCHO3 infusion exhibited a greater postoperative increase in urinary NGAL. Additionally, hospital mortality was increased in patients receiving NaCHO3 compared to the control group.
13	Adis Tasanarong [24]	2013	RCT	100	Thailand	Total -2 groups rHuEPO (n = 50) Placebo (n=50)	The rHuEPO prophylaxis reduced urine NGAL levels within the first three hours following surgery, particularly in patients who developed CSA- AKI, experienced fewer	The incidence of cardiac surgery- associated AKI was lower in the rHuEPO group (14%) compared to the placebo group (38%; p < 0.01). Postoperative increases in serum creatinine (SCr) and decreases in

	1	1	1		1	1			
	E	2215	DOT	252			- 1 C	postoperative complications, did not require renal replacement therapy (RRT), and had no deaths.	estimated glomerular filtration rate (eGFR) were significantly lower in the rHuEPO group compared to the placebo group (p < 0.05).
14	Francesco Marrazzo [25]	2019	RCT	250		USA	Total -2 groups NO gas (n=125) N2-Control (n=125)	The primary outcome is to compare the incidence of AKI between the control and the intervention group. AKI is assessed by evidence of increase in serum creatinine or a decrease in urinary output within 48 hours post-surgery. Secondary outcomes include assessing the severity of AKI is by requirement for renal replacement therapy or worsened renal function at 6 weeks post- surgery.	This study allows for the detection of a 35% relative risk reduction in AKI, assuming a two-sided error rate of 0.05
15	Heyman Luckraz [26]	2021	RCT	220		USA	Total -2 groups RG group (n=110) Control group (n=110)	In patients who had cardiac surgery with CPB, the RS RG system significantly	The postoperative AKI rates were lower in the RG system group compared to the control group (10% vs 20.9%; P = 0.025). Additionally, the mean volumes of urine produced during surgery and within the first 24 hours postoperatively were significantly higher in the RG system group (P \leq 0.001).
16	JW Song [27]	2018	RCT	244	1 year	South Korea	Total -2 groups RIC (n=120) Control (n=124)	It seems that repeated RIC do not support to decrease the incidence of AKI after valvular heart surgery.	In this study, perioperative serum creatinine concentrations were similar between the two groups. The incidences of AKI did not significantly differ between the control and RIC groups, with rates of 19.4% and 15.8%respectively.
17	Sun-Kyung Park [28]	2016	Observational Study	220	1 year	South Korea	Total -1 group	Patients who developed AKI, younger age (<12 months), longer	In a study of paediatric cardiac surgery patients, 41.8% developed

19	S Soh [30]	2016	Double blinded RCT	162	Brazil	Total -2 groups Bicarbonate (n=81) Control (n=81)	Perioperative sodium bicarbonate administration did not decrease the incidence of AKI after off- pump coronary revascularization in high-risk patients and it might be associated with a	administration of NAC, vitamin C or selenium could not reduce the incidence of AKI and its associated mortality and morbidity in patients undergoing off-pump CABG. The results indicate no significant difference in the occurrence of AKI between the bicarbonate group (21%) and the control group (26%) with a p-value of 0.458. However, a notable finding was that more patients in the bicarbonate
18	Shahram Amini [29]	2018	RCT	272	Iran	Total 4 groups Selenium (n=66) Vitamin C (n=67) NAC (n=68) Control (n=71)	In this study, perioperative administration of N-acetylcysteine, vitamin C and selenium were not effective in preventing acute kidney injury and associated morbidity and mortality after off- pump coronary bypass graft surgery.	In this study involving 272 patients, the overall incidence of acute kidney injury (AKI) was 22.1%, with similar rates observed across the vitamin C, NAC, selenium, and control groups (20.9%, 22.1%, 31.8%, and 14.1% respectively; P=0.096). The duration of mechanical ventilation, length of stay in the intensive care unit and hospital, and in- hospital mortality did not vary significantly among the four groups. Perioperative
							CPB time, and low preoperative haemoglobin were independent risk factors. Additionally, an increase in haemoglobin concentration (>3 g/dl) from preoperative levels on postoperative day 1 was significantly associated with AKI, regardless of patient demographics and heart disease type.	acute kidney injury (AKI), with 8.2% requiring renal replacement therapy within the first postoperative week. AKI severity varied, with 25.9% at KDIGO stage 1, 12.3% at stage 2, and 3.6% at stage 3. Prospective trials are needed to assess whether correcting preoperative anaemia and preventing haemoconcentration can improve outcomes in these patients.

							prolonged ventilatory care.	prolonged mechanical ventilation (>24 hours) compared to the control group (20 vs. 6), with a
								significant p-value of 0.003.
20	Matthias Thielmann [31]	2021	RCT	341	North America and Germany	Total -2 groups Teprasiran (n=176) Placebo (n=165)	The incidence, severity, and duration of early AKI in high-risk patients undergoing cardiac surgery were significantly reduced after Teprasiran administration.	The incidence of acute kidney injury (AKI) was significantly lower in Teprasiran-treated patients compared to those receiving placebo, with rates of 37% and 50%, respectively, resulting in a 12.8% absolute risk reduction (P=0.02) and an odds ratio of 0.58 (95% CI, 0.37-0.92). Moreover, AKI severity and duration were improved with Teprasiran, as evidenced by fewer patients experiencing grade 3 AKI (2.5% vs. 6.7% for Teprasiran vs. placebo) and shorter AKI duration (7% vs. 13% for Teprasiran vs. placebo patients with AKI lasting ≥5 days).
21	Takahiro Moriyama [32]	2017	RCT	48	Japan	Total -2 groups hANP (n=24) non hANP (n=24)	In the study, hANP exerted Reno protective effects during cardiac surgery, and can possibly reduce the incidence of AKI after ischemia- reperfusion surgery. Moreover, this protective effect of hANP is mainly induced by inhibition of the intrarenal RAAS.	After cardiac surgery with cardiopulmonary bypass, patients who received hANP had lower levels of urinary angiotensinogen compared to those who did not receive hANP, both immediately after surgery and 3 hours later. At the 3-hour mark post-surgery, hANP-treated patients had lower levels of urinary NGAL, L-FABP. Additionally, it seemed that hANP treatment reduced the incidence of postoperative AKI.
22	Melanie Meersch [33]	2014	Observational Study	50	Germany	Total -1 group	Urinary [TIMP-2] *[IGFBP7] serves as a sensitive and specific biomarker to predict AKI early after cardiac	In a study of 50 patients undergoing cardiac surgery, 26 patients (52%) developed AKI. Urinary

	r r		1			1
1					surgery and to	concentration of
1					predict renal	[TIMP-2] *[IGFBP7]
					recovery.	increased
						significantly from a
						mean of 0.49 (SE
						0.24) at baseline to
						1.51 (SE 0.57) 4
						hours after CPB in
						AKI patients. The
						maximum urinary
						[TIMP-2] [IGFBP7]
						concentration within
						the first 24 hours post-
						surgery demonstrated
						strong predictive ability
						for AKI. The decline in
						urinary [TIMP-2]
						[IGFBP7] values was
						identified as the most
						significant predictor
						for renal recovery.
						These findings
						suggest that urinary
						[TIMP-2] *[IGFBP7]
						may serve as an early
						biomarker for AKI
						following cardiac
						surgery and could aid
						in predicting renal
						recovery.

The Overall risk of the included studies was found to be low. Table 2 shows the RoB assessments of individual studies. The mean RoB score was calculated to be 18.29. The mean difference of each study was calculated. Osterholt [10] was found to have the lowest mean difference of -3.7 and the highest RoB score of 22.

Table 2: ROB Using ROBIS Tool.

1001.		D 1 0	34 2011	
S No	Author	Rob Score	Mean Difference	
1	Axelrod DM et al	18	0.2916667	
2	Eslami P et al	19	-0.7083333	
3	McCullough PA et al	17	1.2916667	
4	Swaminathan M et al	18	0.2916667	
5	Kullmar M et al	21	-2.7083333	
6	Wetz AJ et al	17	1.2916667	
7	Billings FT et al	17	1.2916667	
8	Cho JS et al	19	-0.7083333	
9	Grundmann F et al	21	-2.7083333	
10	Osterholt T et al	22	-3.7083333	
11	Zarbock et al	18	0.2916667	
12	Haase M et al	16	2.2916667	
13	Tasanarong A et al	18	0.2916667	
14	Marrazzo F et al	19	-0.7083333	
15	Luckraz H et al	20	-1.7083333	
16	Song JW et al	21	-2.7083333	
17	Park SK et al	19	-0.7083333	
18	Amini S et al	18	0.2916667	
19	Soh S et al	17	1.2916667	
20	Thielmann M et al	18	0.2916667	
21	Moriyama T et al	17	1.2916667	
22	Gocze I et al	16	2.2916667	
23	Meersch M et al	17	1.2916667	
	Mean score	18.2916667		

Journal of Clinical Cardiology and Cardiology Research

Tabulation of mean difference and confidence intervals.

Alpha	
Standard Deviation	1.706233244
Population Size	23
Confidence Interval	0.682622925

Study	Mean Difference	CI+	CĿ
Axelrod DM	0.2916667	0.6206667	-0.0373333
Eslami P	-0.7083333	-0.3793333	-1.0373333
McCullough PA	1.2916667	1.6206667	0.9626667
Swaminathan M	0.2916667	0.6206667	-0.0373333
Kullmar M	-2.7083333	-2.3793333	-3.0373333
Wetz AJ	1.2916667	1.6206667	0.9626667
Billings FT	1.2916667	1.6206667	0.9626667
Cho JS	-0.7083333	-0.3793333	-1.0373333
Grundmann F	-2.7083333	-2.3793333	-3.0373333
Osterholt T	-3.7083333	-3.3793333	-4.0373333
Zarbock	0.2916667	0.6206667	-0.0373333
Haase M	2.2916667	2.6206667	1.9626667
Tasanarong A	0.2916667	0.6206667	-0.0373333
Marrazzo F	-0.7083333	-0.3793333	-1.0373333
Luckraz H	-1.7083333	-1.3793333	-2.0373333
Song JW	-2.7083333	-2.3793333	-3.0373333
Park SK	-0.7083333	-0.3793333	-1.0373333
Amini S	0.2916667	0.6206667	-0.0373333
Soh S	1.2916667	1.6206667	0.9626667
Thielmann M	0.2916667	0.6206667	-0.0373333
Moriyama T	1.2916667	1.6206667	0.9626667
Gocze I	2.2916667	2.6206667	1.9626667
Meersch M	1.2916667	1.6206667	0.9626667

Discussion

Acute kidney injury (AKI) remains a significant and frequently encountered complication following cardiac surgery, presenting a formidable challenge to patient recovery and prognosis. This systematic review underscores the substantial burden of cardiac surgeryassociated AKI (CSA-AKI), with reported incidence rates ranging from 14% to 50% across the included studies [8,13,19]. This variability likely arises from the heterogeneity in patient characteristics, surgical procedures, and diagnostic criteria employed. Nonetheless, these findings align with previous metaanalyses and large-scale observational studies, collectively highlighting the pervasive nature of this complication and the urgent need for effective preventive and therapeutic interventions [1,2]. Finding targeted treatments for CSA-AKI is extremely difficult due to its complex etiology, which includes ischemia-reperfusion injury, inflammation, oxidative stress, and hemodynamic disturbances. With varying degrees of success, a number of pharmacological treatments targeted at reducing these underlying mechanisms were assessed. Vitamin C, aminophylline [1], N-acetylcysteine, selenium [18], and vitamin C were among the agents that did not show a discernible decrease in the incidence or severity of AKI. These results are in line with earlier systematic reviews and meta-analyses [3,4], indicating that these medications might not be able to sufficiently address the intricate pathophysiological mechanisms driving CSA-AKI. On the other hand, encouraging outcomes were noted when dexmedetomidine, a highly selective α^2 adrenergic receptor agonist, was administered during surgery [8]. According to Cho et al.'s study, the dexmedetomidine group had reduced incidence and severity of AKI, which may have been caused by the drug's pleiotropic effects, which include antiinflammatory, anti-apoptotic, and Reno protective qualities [5]. Reno protective properties of dexmedetomidine are demonstrated by its ability to reduce ischemia-reperfusion injury and inflammatory cascades related to heart surgery.

Two promising non-pharmacological strategies to reduce CSA-AKI are the use of a revolutionary renal guard (RG) system [15] and the introduction of a KDIGO-based treatment bundle [11]. Moderate to severe AKI patients were significantly reduced as a result of the treatment bundle, which included strategies like avoiding nephrotoxic substances, optimizing fluid management, and initiating renal replacement therapy as soon as possible. This result emphasizes how crucial it is to implement multidisciplinary care protocols and evidence-based standards in order to improve renal outcomes. Comparably, the RG system showed a decreased incidence of AKI and enhanced urine production. The RG system was created to lessen the hemodynamic and inflammatory insults associated cardiopulmonary bypass (CPB). with Larger. multicenter trials should be conducted to confirm the clinical value and cost-effectiveness of this innovative technology, as these encouraging results demand for. Teprasiran, a new P2Y12 receptor antagonist, was found to significantly reduce the frequency and severity of AKI [20]. This is a noteworthy finding from the review. When adenosine diphosphate (ADP) activates the P2Y12 receptor, which is present on platelets and different types of vascular cells, it plays a crucial part in thrombosis and inflammation [7]. Teprasiran may have Reno protective effects by blocking this receptor, which would lessen the inflammatory cascade and microvascular dysfunction linked to CPB. These results underline the possibility of targeted therapeutics regulating this system and are consistent with the increasing understanding of the role of purinergic signaling in AKI development.

Because novel biomarkers like urine NGAL, plasma NGAL (pNGAL), and the urinary [TIMP-2] × [IGFBP7] product are predictively beneficial in identifying people at risk, there is hope for early intervention and prevention of CSA-AKI [8,9,22,23]. These indicators have demonstrated improved diagnostic efficacy when compared to traditional markers such serum creatinine, enabling the early detection of renal disease. By identifying high-risk individuals early on, appropriate preventive interventions and tighter monitoring can be put in place, potentially delaying the onset and severity of AKI. Meersch et al.'s work [23] further highlighted the potential clinical utility of urine [TIMP-2] × [IGFBP7], as it showed the ability to predict both the development of AKI and renal recovery. The results of this review further highlight the significance of preventative measures and risk customized stratification. Wetz et al.'s study [6] showed that sodium bicarbonate therapy is effective in lowering the incidence of AKI, especially in low-risk patients after heart surgery. On the other hand, patients who

are more likely to develop AKI may benefit more from short-term calorie restriction, according to research by Grundmann et al. [9]. These results are consistent with the increasing awareness that, considering the variety of risk profiles and underlying comorbidities of patients undergoing heart surgery, a "one-size-fitsall" strategy may not be the most effective in reducing CSA-AKI. Customizing preventative measures according to personal risk evaluations could improve their efficiency and best use of available resources. There is ample evidence of the negative effects of CSA-AKI, such as higher mortality, longer hospital admissions, and higher healthcare expenditures; yet, one major obstacle continues to be the lack of consistently effective therapies. This gap emphasizes the necessity of investigating new therapeutic targets and strategies in addition to gaining a better knowledge of the intricate pathophysiological mechanisms underlying the development of AKI in the setting of cardiac surgery.

Future studies could examine targeted therapeutics that modulate particular pathways implicated in the pathophysiology of CSA-AKI, such as the purinergic signaling system that Teprasiran targets. Furthermore, more research is necessary to fully understand the significance of cutting-edge therapeutic approaches including gene therapy and cell-based therapies in the prevention and treatment of CSA-AKI. Although the administration of allogeneic mesenchymal stem cells was not shown to be effective in the trial by Swaminathan et al. [4], it does show that cell-based therapies have the capacity to modulate the inflammatory and regenerative processes involved in AKI. Moreover, the incorporation of innovative biomarkers and risk assessment instruments into clinical decision-making algorithms could expedite the execution of customized preventive and therapeutic approaches. Early identification of highrisk patients and customized interventions based on individual risk profiles may enhance treatment outcomes and the efficacy of preventive measures. The research conducted by Gocze et al. [22] and Meersch et al. [23] offers valuable perspectives on the possible use of the urinary [TIMP-2] × [IGFBP7] biomarker in risk assessment and renal recuperation tracking, respectively. Finally, this systematic review offers a thorough summary of the state of CSA-AKI today, emphasizing the problems that still need to be and possible directions solved for further investigation. The lack of consistently effective medicines highlights the need for ongoing research efforts, even if a number of interventions and methods, like the injection of dexmedetomidine, KDIGO-based treatment bundles, novel biomarkers, and targeted medications like Teprasiran, have showed promise. To reduce the significant burden connected with this consequence and enhance patient outcomes, it is imperative to clarify the intricate pathophysiological mechanisms underlying CSA-AKI and create tailored, focused preventative and therapy strategies.

Limitations

Variability in study designs, patient populations, and interventions across included studies may contribute to heterogeneity. Despite quality assessment, the variability in methodological quality among included studies introduce bias and affect the robustness of the findings. The findings of the systematic review may not be fully generalizable to all patient populations or healthcare settings. The availability of high-quality interventional studies targeting AKI prevention or management post-cardiac surgery were limited, potentially restricting the ability to make firm recommendations for clinical practice.

Conclusion

In conclusion, this systematic review sheds light on the significant burden of acute kidney injury (AKI) following cardiac surgery, emphasizing its detrimental impact on patient outcomes and healthcare systems. Despite advancements in surgical techniques and perioperative care, the incidence of AKI remains substantial, necessitating targeted interventions to mitigate its occurrence. While pharmacological agents such as aminophylline, vitamin C, and selenium did not demonstrate significant efficacy in reducing AKI, promising results were observed with dexmedetomidine administration, the use of renal guard systems, and implementation of KDIGO-based treatment bundles. Furthermore, novel therapeutics like Teprasiran show potential in reducing the frequency and severity of AKI, providing hope for targeted interventions to alleviate the inflammatory cascades and microvascular dysfunction associated with cardiac surgery. Additionally, the identification of early biomarkers such as urinary NGAL and [TIMP-2] × [IGFBP7] offers opportunities for early intervention and preventive strategies, enabling clinicians to identify high-risk individuals and initiate timely interventions. Overall, this review underscores

the complexity of AKI pathophysiology, the need for multidisciplinary approaches, and the importance of evidence-based standards in improving renal outcomes post-cardiac surgery. Future research should focus on conducting larger, multicenter trials to validate the efficacy and cost-effectiveness of innovative technologies and therapeutic interventions, ultimately enhancing patient care and reducing the burden of AKI on healthcare systems.

References

- Susantitaphong P., Cruz D.N., Cerda J., et. al. (2013). World Incidence of AKI: A Meta-Analysis. *Clin J Am Soc Nephrol.* 8:1482-1493.
- Pickering JW, James MT, Palmer SC. (2015). Acute Kidney Injury and Prognosis After Cardiopulmonary Bypass: A Meta-Analysis of Cohort Studies. Am J Kidney Dis. 65(2):283-293.
- Bellomo R., Ronco C., Kellum J.A., Mehta R.L., Palevsky P.M. (2004). Acute Dialysis Quality Initiative Workgroup Acute Renal Failure– Definition, Outcome Measures, Animal Models, Fluid Therapy and Information Technology Needs: The Second International Consensus Conference of The Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 8:204-212.
- Mehta R.L., Kellum J.A., Shah S.V. et al. (2007). Acute Kidney Injury Network: Report of An Initiative to Improve Outcomes in Acute Kidney Injury. Crit Care. 11:31.
- KDIGO. (2012). Clinical Practice Guideline for Acute Kidney Injury Section 2: AKI Definition. *Kidney Int Suppl.* 1:19-36.
- Boldt J, Brenner T, Lehmann A, Suttner SW, Kumle B, et al. (2003). Is Kidney Function Altered by The Duration of Cardiopulmonary Bypass? *Ann. Thorac. Surg.* 75(3):906-912.
- Rosner, M.H., Okusa, M.D. (2006). Acute Kidney Injury Associated with Cardiac Surgery. *Clin. J. Am. Soc. Nephrol.* 1:19-32.
- Haase M, Bellomo R, Devarajan P, Schlattmann P, Haase-Fielitz A. (2009). Accuracy Of Neutrophil Gelatinase-Associated Lipocalin (NGAL) In Diagnosis and Prognosis in Acute Kidney Injury: A Systematic Review and Meta-Analysis. Am. J. Kidney Dis. 54(6):1012-1024.
- Greenwood, S. A., Mangahis, E., Castle, E. M., Wang, J., Campbell, J., et al. (2019). Arterial Stiffness Is a Predictor for Acute Kidney Injury

Following Coronary Artery Bypass Graft Surgery. *Journal of Cardiothoracic Surgery*, 14.

- Legouis D, Galichon P, Bataille A, Chevret S, Provenchère S, et al. (2017). Rapid Occurrence of Chronic Kidney Disease in Patients Experiencing Reversible Acute Kidney Injury After Cardiac Surgery. Anesthesiology. 126(1):39-46.
- 11. National Confidential Enquiry into Patient Outcomes and Death (NCEPOD) Report: Adding Insult to Injury. (2009).
- 12. Axelrod, David M., et al. (2016). A Double-Blinded, Randomized, Placebo-Controlled Clinical Trial of Aminophylline to Prevent Acute Kidney Injury in Children Following Congenital Heart Surgery with Cardiopulmonary Bypass. *Pediatric Critical Care Medicine*. 17(2):135-143.
- Eslami, Pegah, et al. (2021). A Randomized, Double-Blind, Placebo-Controlled, Clinical Trial of High-Dose, Short-Term Vitamin D Administration in The Prevention of Acute Kidney Injury After Cardiac Surgery. Cardiorenal Medicine. 11(1):52-58.
- McCullough, Peter A., et al. (2016). ABT-719 for the prevention of acute kidney injury in patients undergoing high-risk cardiac surgery: a randomized phase 2b clinical trial. *Journal of the American Heart Association*. 5(8):e003549.
- 15. Swaminathan, Madhav, et al. (2018). Allogeneic mesenchymal stem cells for treatment of AKI after cardiac surgery. *Journal of the American Society of Nephrology*. 29(1):260-267.
- 16. Küllmar, Mira, et al. (2020). Biomarker-Guided Implementation of The KDIGO Guidelines to Reduce the Occurrence of Acute Kidney Injury in Patients After Cardiac Surgery (Prev AKI-Multicenter): Protocol for A Multicenter, Observational Study Followed by Randomized Controlled Feasibility Trial. BMJ Open. 10(4):e034201.
- 17. Wetz, Anna J., et al. (2015). Does Sodium Bicarbonate Infusion Really Have No Effect on The Incidence of Acute Kidney Injury After Cardiac Surgery? A Prospective Observational Trial. Critical Care. 19:1-10.
- Billings, Frederic T., et al. (2016). High-Dose Perioperative Atorvastatin and Acute Kidney Injury Following Cardiac Surgery: A Randomized Clinical Trial. *Jama.* 315(9):877-888.
- 19. Cho, Jin Sun, et al. (2016). Perioperative Dexmedetomidine Reduces the Incidence and Severity of Acute Kidney Injury Following

Valvular Heart Surgery. Kidney International. 89(3):693-700.

- Grundmann, Franziska, et al. (2018). Preoperative Short-Term Calorie Restriction for Prevention of Acute Kidney Injury After Cardiac Surgery: A Randomized, Controlled, Open-Label, Pilot Trial. Journal of the American Heart Association. 7(6):e008181.
- 21. Osterholt, Thomas, et al. (2022). Preoperative Short-Term Restriction of Sulfur-Containing Amino Acid Intake for Prevention of Acute Kidney Injury After Cardiac Surgery: A Randomized, Controlled, Double-Blind, Translational Trial. *Journal of the American Heart Association*. 11(17):e025229.
- 22. Zarbock, Alexander, et al. (2021). Prevention Of Cardiac Surgery–Associated Acute Kidney Injury by Implementing the KDIGO Guidelines in High-Risk Patients Identified by Biomarkers: The PrevAKI-Multicenter Randomized Controlled Trial. Anesthesia and Analgesia. 133(2):292-302.
- Haase, Michael, et al. (2013). Prophylactic Perioperative Sodium Bicarbonate to Prevent Acute Kidney Injury Following Open Heart Surgery: A Multicenter Double-Blinded Randomized Controlled Trial. *PLoS.* 10(4):e1001426.
- 24. Tasanarong, Adis, et al. (2013). Prophylaxis With Erythropoietin Versus Placebo Reduces Acute Kidney Injury and Neutrophil Gelatinase-Associated Lipocalin in Patients Undergoing Cardiac Surgery: A Randomized, Double-Blind Controlled Trial. BMC Nephrology. 14:1-10.
- 25. Marrazzo, Francesco, et al. (2019). Protocol of a Randomized Controlled Trial in Cardiac Surgical Patients with Endothelial Dysfunction Aimed to Prevent Postoperative Acute Kidney Injury by Administering Nitric Oxide Gas. BMJ Open. 9(7):e026848.
- Luckraz, Heyman, et al. (2021). Reduction In Acute Kidney Injury Post Cardiac Surgery Using Balanced Forced Diuresis: A Randomized, Controlled Trial. European Journal of Cardio-Thoracic Surgery. 59(3):562-569.
- 27. Song, J. W., et al. (2018). Remote Ischemic Conditioning for Prevention of Acute Kidney Injury After Valvular Heart Surgery: A Randomized Controlled Trial. British Journal of Anesthesia. 121(5):1034-1040.
- 28. Park, Sun-Kyung, et al. (2016). Risk Factors for Acute Kidney Injury After Congenital Cardiac

Journal of Clinical Cardiology and Cardiology Research

Surgery in Infants and Children: A Retrospective Observational Study. *PLoS One*. 11(11):e0166328.

- 29. Amini, Shahram, et al. (2018). Selenium, Vitamin C And N-Acetylcysteine Do Not Reduce the Risk of Acute Kidney Injury After Off-Pump CABG: A Randomized Clinical Trial. *Brazilian Journal of Cardiovascular Surgery*. 33:129-134.
- 30. Soh, S., et al. (2016). Sodium Bicarbonate Does Not Prevent Postoperative Acute Kidney Injury After Off-Pump Coronary Revascularization: A Double-Blinded Randomized Controlled Trial. BJA: British Journal of Anaesthesia. 117(4):450-457.
- 31. Thielmann, Matthias, et al. (2021). Teprasiran, A Small Interfering RNA, For the Prevention of Acute Kidney Injury in High-Risk Patients Undergoing Cardiac Surgery: A Randomized Clinical Study. *Circulation*. 144(14):1133-1144.
- 32. Moriyama, Takahiro, et al. (2017). The Protective Effect of Human Atrial Natriuretic Peptide on Renal Damage During Cardiac Surgery. *Journal of anesthesia*. 31:163-169.
- 33. Meersch, Melanie, et al. (2014). Urinary TIMP-2 and IGFBP7 as early biomarkers of acute kidney injury and renal recovery following cardiac surgery. *PloS One*. 9(3):e93460.

Cite this article: Madala C. S., Naseer M. Q., Sanvi K., Gohil K. M., Velmurugan S., et al. (2024). A Systematic Review on Acute Kidney Injury Following Cardiac Surgery: Clinical Outcomes with Preventive Strategies Over the Decades, *Journal of Clinical Cardiology and Cardiology Research*, BioRes Scientia Publishers. 3(2):1-16, DOI: 10.59657/2837-4673.brs.24.033

Copyright: © 2024 Sinthujaa Velmurugan, this is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Article History: Received: June 11, 2023 | Accepted: July 05, 2024 | Published: July 12, 2024

© 2024 Sinthujaa Velmurugan, et al.