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Introduction  

Gait as a measure of health 

Gait refers to the way a person or animal walks or runs 
and is a simple yet informative measure of overall 
health. Most patterns of movement inevitably slow 
and deteriorate with age not only for humans, but 
across various species [1]. Deteriorations in gait, and 
in particular walking speed (WS), have been 
associated with a plethora of ageing-associated 
conditions such as cognitive impairment, arthritis, 
cardiovascular disease and sarcopenia, and has 
emerged as an important measure of overall health in 

ageing human populations [1]. According to a meta-
analysis by Studenski et al, WS is positively associated 
with survival in older adults. For each increment of 
0.1 m/s, a 12% increase in survival was observed (HR 
0.88, 95% CI, 0.87- 0.90; P<0.001) [2]. This shows 
that WS is not only a measure of current health but 
also a predictor of survival and therefore future 
health. These findings have reasonably high external 
validity in the ageing population as they recruit 
community-dwelling older adults. 
Importantly, other studies have led WS, to be dubbed 
as the “6th vital sign” [3] as it has proven to be a valid, 
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Abstract 
Background: Gait, particularly walking speed (WS), has emerged as an essential indicator of health. WS is indicative of 
current health and predicts future health trends, especially in older adults. Notably, a 0.1 m/s WS increase corresponds 
to a 12% rise in survival among this demographic, establishing WS as a powerful prognostic tool. This has resulted in the 
designation of WS as the "6th vital sign", which is applicable to a broad spectrum of medical conditions. Additionally, 
computerized gait analysis reveals nuanced differences in movement patterns across age groups. This review provides a 
detailed insight into the multifaceted nature of gait and its health implications. 
Purpose: This review's primary objective is to underscore the significance of gait and WS as pivotal health markers. By 
framing WS as the "6th vital sign" and delving into gait's complexities using digital analysis, the review aims to elucidate 
how gait metrics inform health trajectories in diverse medical scenarios. 
Methods: Our analysis employed laboratory-based three-dimensional gait techniques. Kinematic data were obtained using 
infrared markers on the body and triangulated with multiple cameras. Concurrently, force plates within electronic 
pathways captured kinetic data, such as ground reaction forces. Data collection was guided by a pre-established checklist 
encompassing specific conditions (including Parkinson’s Disease, Lumbar disk herniation, Chronic Mechanical Lower 
back pain, Lumbar Spinal Stenosis, Depression, Hip Osteoarthritis, COPD), analysis tools (e.g., type of cameras, force 
plates), kinematic and kinetic parameters (e.g., support moments, momentum), and potential psychological impacts on 
participants (e.g., Hawthorne and “white-coat” effects). The clinical significance of our data was validated against existing 
research on gait pattern variations in mentioned conditions, ensuring quality through stringent research standards. 
Conclusion: Spatiotemporal gait analysis, especially with machine learning application, is nascent. Although there's 
potential in its diagnostic capability, extensive research is needed for clinical use. Our focus was primarily on Parkinson’s 
Disease, aiming to gauge machine learning's role in discerning pathological from normal gait using spatiotemporal metrics. 
Future investigations should explore this approach for different gait-related conditions. 
 
Keywords: gait; walking speed; health status; ageing demographics; computerized gait analysis; 6th vital sign; kinematic 
data; spatiotemporal metrics 
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reliable and sensitive [4,5] measure of health 
outcomes restricted not only to the context of ageing, 
but also various pathology groups including 
neurological, cardiovascular, orthopedic and 
psychiatric conditions [6-10]. Gait, however, is 
remarkably complex and is not restricted to the metric 
of walking speed. Computerized gait analysis with 
kinematic and kinetic parameters (for example 
cadence, reaction forces) can highlight more 
interesting and robust differences [1] between 
normative and pathological gait in the young and old 

[11]. This in turn, has sparked great interest in the 
computerized analysis of gait with the gait metrics 
explored below. 
 

Types of gait analysis 

Under quantitative and qualitative gait analysis, three 
broad categories exist, including observational gait 
analysis, kinematic analysis, and kinetic analysis (see 
Figure 1). 

 

 
Figure 1: Types of gait analysis 

 
Gait analysis can be categorized into qualitative 
methods, which refers to observation by clinicians, 
and quantitative methods which can be further 
categorized into kinematic and kinetic analysis. 

Observational gait analysis  

Observational gait analysis methods are qualitative 
and are useful in the differentiation of pathological 
gait patterns in clinical practice. For example, a 
clinician may distinguish Parkinsonian gait from 
myopathic gait (for example positive Trendelenburg 
sign) or neuropathic gait (for example foot drop) [12]. 
However, observational methods are highly 
subjective, and their accuracy depends on the skill of 
the clinician and their knowledge of both normal and 
pathological gait. A study measuring the gait 
disturbances after stroke found poor correlation 
between validated foot-force sensors and clinician 
measurements (mean r=0.55) [13]. 

Kinematic Data  

Kinematics describes the way in which objects move 
without regard for the forces which cause them to 
move. In contrast to observational methods, data is 
quantitative and includes both spatiotemporal 
metrics such as gait velocity, cadence, step time, step 
length etc. as well as descriptive components of gait 

such as angles of joint rotation, pronation and 
supination as well as range of motion [14]. 

Kinetic Data  

Kinetic data is also quantitative in nature, but rather 
aims to understand why objects move the way they 
move i.e., regarding the forces behind the actions. As 
such, it includes metrics such as ground reaction 
force, support moment, power and energy [14].  

Laboratory methods  

Laboratory-based three-dimensional gait analysis has 
long been regarded as the “gold standard” in 
measuring quantitative gait parameters in both 
clinical and non-clinical (sport) applications [14]. The 
use of infrared markers placed at points around the 
body allow researchers to use cameras to triangulate 
the body in 3D space and gather highly accurate 
kinematic data [14]. In addition, force plates in 
electronic walkways can reveal kinetic data such as 
ground reaction forces, support moments and 
momentum [15]. The literature strongly suggests the 
clinical relevance of both kinematic and kinetic data 
as statistically significant differences in gait patterns 
have been observed in patients with lumbar spinal 
stenosis [16], recovering from total knee arthroplasty 
(TKA) [17], Parkinson’s disease [18] and obesity [19]. 
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However, there are several drawbacks with laboratory-
based analysis. Firstly, it requires expensive 
equipment and technicians which are not feasible in 
the clinical setting [20]. Secondly, these methods are 
susceptible to the psychological Hawthorne and 
“white-coat” effects as individuals are more likely to 
be conscious of their gait when observed by a clinician 
and fail to capture ‘free-living gait’ which refers to the 
way people walk in everyday life [20].  One study by 
Brodie et al. highlights this well, finding that lab-based 
technologies tend to overestimate parameters such as 
cadence (8.91%, p< 0.001) whilst underestimating the 
variability in gait (81.55%, p<0.001) [21]. These 
drawbacks may limit the validity of the study and 
decrease the generalizability of the findings.  

Wearable sensors 

In contrast, inertial measurement units (IMU’s) are 
wearable single-point devices with an accelerometer, 
magnetometer, and a gyroscope. Measurements made 
with IMU’s have shown to be largely consistent with 
that of the laboratory analysis techniques (r >0.83). 
These are very promising as they can capture free-
living gait in community and home environments as 
they are small, portable, and unobtrusive to the 
activities of daily living [22-24]. The potential of 
IMU’s to gather kinematic data is well established in 
the literature with a many papers documenting the 
accurate measurement of spatiotemporal metrics and 
overall agreement with that obtained from laboratory-
based techniques [25-30]. Other descriptive kinematic 
data such as joint angles are also possible with IMU’s, 
yet they often require multiple sensors and extensive 
calibration [31]. which again, is not feasible in the fast-
paced clinical environment. However, the literature is 
relatively scarce when it comes to gathering clinically 
relevant kinetic data using IMU’s. A possible reason 
for this is that it is difficult to measure forces 
accurately without expensive electronic walkways [32]. 
A select few studies seek to validate use of IMU’s in 
the form of smart-insoles and tendon-tensiometry 
devices which measure kinetic parameters such as 
ground reaction forces and muscle work and power 

output respectively [32,33]. These, however, not only 
have limited reliability due to minimal repetition, but 
are also more popular in the realm of high-
performance sports and rehabilitation where the real 
focus of gait analysis is not to identify disease states 
but rather to maximize the efficiency of locomotion 
[34]. For example, several studies have explored how 
GRF relates to the optimal cadence, stride length and 
gait velocity values for runners to minimize energy 
expenditure and maximize efficiency [35-37].  
Whilst several studies have shown that there are 
clinically significant differences in kinetic metrics 
between various pathology groups [16-19], the 
literature is undecided regarding its clinical utility and 
indicates that kinematic parameters such as 
spatiotemporal data are sufficient whilst having the 
additional benefit of being efficiently obtained using 
single-point wearable IMU’s. In addition, models 
created by Verghese et al. and Lord et al. which used 
spatiotemporal data alone were able to explain up to 
80% of gait variance between healthy and 
pathological gait using only five factors: pace, rhythm, 
variability, asymmetry and postural control [38,39] 
showing that spatiotemporal parameters are more 
than adequate in clinical gait analysis. Whilst the 
above arguments strengthen the case for the use of 
wearable IMU’s, they suffer from drift errors and 
noise due to interference with the magnetic fields of 
other electronic devices. According to one study, 
these errors can render up to 20% of data unusable. 
Fortunately, these entries can be manually identified 
and removed in data processing stages [40,41].  

Spatiotemporal gait metrics 

A normal gait cycle for each leg involves a stance and 
a swing phase.  Stance (also known as support) phase 
describes the entire period during which a foot is on 
the ground, and swing describes the time this same 
foot is in the air as the limb advances in space. When 
one limb is instance, the contralateral limb is in swing, 
except for an overlapping period where both feet are 
on the ground, known as the double support time, as 
seen in Figure 2.
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Figure 2: Gait cycle for right leg (shaded). 

 
The figure shows that the gait cycle for any one leg is 
comprised of a stance and a swing phase. The right-leg 
is shaded and used as an example. Figure taken [83], 
The single support time is the period during which 

only one limb is on the ground. Several other 
spatiotemporal gait metrics exist and are shown below 
in Figure 3.

 

 
Figure 3: Common spatiotemporal gait metrics. 

 
The figure above summarizes the most common 
spatiotemporal metrics. Spatial parameters such as 
step and stride length can be considered alongside 
temporal metrics of step and stride time to calculate 
spatiotemporal data pertaining to gait velocity and 
cadence. Furthermore, more complex ‘derived’ 
metrics such as variability and asymmetry in step time, 
step length and gait velocity can also be calculated. 
Figure taken from Natarajan et al. [83] 
 

Using gait to distinguish pathologies  

As aforementioned, several studies have 
demonstrated the potential for spatiotemporal gait 
metrics to differentiate healthy and pathological gait 
sig-natures. A comprehensive literature search of four 
databases (Medline, Embase, PubMed, Web of 
Science) was conducted, after which 1476 records 
were identified and 21 articles included after 
screening. These studies investigated the 
spatiotemporal gait metrics in various conditions and 
compared them to healthy age-matched controls. 
Findings from these articles are summarized in Table 
1.
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Table 1: Summary of gait alteration in various conditions. 
Gait Velocity Cadence Stride Length Stride Time Stride time variability Double support time 

Parkinson’s Disease [43-49,84] 
-(8-11) % -6% -(7-17) % +(6-8) % +76% +24% 

Lumbar Disc Herniation50 
-76% -66% × × × +53% 

Chronic Mechanical Lower Back Pain [50,55,56] 
-(13-26) % -19% × × × +(14-16) % 

Lumbar Spinal Stenosis [51-53,85,86] 
-(12-37) % -(10-14) % × × × × 

Depression [87] 
-3% × × × × +0.03% 

Hip Osteoarthritis [88] 
-14% -5% -10% × × +13% 

COPD [89,90] 
-7% -(7-13) % × +15% × +(16-17) % 

 

Studies included in this summary tables reported 
mean values of gait parameters in patients with 
relevant pathologies as well as their age-matched 
controls. The percentage difference was calculated 
and reported above. A range was included where 
results were derived from multiple studies. Table 1 is 
merely a snapshot of the unique gait ‘signatures’ of 
various pathologies which illuminates the diagnostic 
potential of spatiotemporal gait metrics. For example, 
appreciable differences can be noted between 
Parkinson’s disease [42-49] and Lumbar disc 
herniation [50] in terms of cadence (-6% vs -66%) and 
double support time (+24% vs +53%) whilst those 
with Lumbar spinal stenosis [20,51-54] present with a 
more modest decrease in cadence (10-14%). 
Moreover, the large ranges observed in the decrease in 
gait velocity in chronic mechanical back pain 
[50,55,56] (13-26%) and Lumbar spinal stenosis (12-
37%) may indicate that gait metrics can diagnose the 
severity of a condition, or that methods used to 
measure gait velocity are simply imprecise. 
Additionally, there are many blank cells in Table 1, 
showing that the literature has not comprehensively 

addressed spatiotemporal gait changes in all gait-
altering pathologies. Parkinson’s disease [42-49] is the 
most studied gait pattern in the literature, with studies 
on other pathologies being relatively scarce. Certainly, 
this field is still largely in its infancy and a many more 
research papers comparing the gait metrics of 
pathological and normative gait of age-matched 
controls of various pathologies are necessary before 
the diagnostic utility of gait metrics can be considered. 
There is a single meta-analysis of spatiotemporal gait 
changes associated with Parkinson’s disease (PD) [57]. 
Its findings have very low external validity as only two 
studies screened in the review contained data 
gathered from “free-living contexts” and even these 
were excluded from the final meta-analysis as they 
were found to be largely heterogenous with laboratory 
data. A 2016 study by Del Din et al. [58] found 
statistically significant differences between laboratory 
and free-living gait in PD patients as can be seen in 
Figure 4 which demonstrates the overwhelming need 
for studies documenting ‘free-living’ gait and 
strengthens the case for the use of wearable IMU’s.
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Figure 4: Radar plot illustrating 14 spatiotemporal gait metrics for patients with Parkinson’s Disease (PD) and controls (CL) 
as evaluated in the laboratory (left) and in free-living contexts (right). Central dotted line represents CL data and bolded line 

represents PD data measured in standard deviations from CL values (range ±2SD). Figure taken from Del Din et al. [58] 
 
The same study also found that gait signatures varied 
significantly with the duration of the ambulatory bout 
as shown in Figure 5. Longer ambulatory bouts (ABs) 
were more discriminative of pathological gait in PD. 

This calls into question a large portion of the current 
literature and the short (<10 seconds) ABs used to 
obtain gait metrics as summarized by Table 2.

 

 
Figure 5: Radar plot illustrating 14 spatiotemporal gait metrics for patients with Parkinson’s Disease (PD) and controls (CL) 

as evaluated ambulatory bouts (ABs) in free-living contexts. Central dotted line represents CL data and bolded line 
represents PD data measured in standard deviations from CL values (range ±2SD). (a) represents Abs<10s, (b) represents 

30s<Abs<60s and (c) represents Abs>120s. Figure taken from Del Din et al. [58]. 

 
Table 2: Summary of ambulatory bouts used to measure spatiotemporal gait metrics in patients with Parkinson’s 
disease. Certain studies provided the ambulatory bout in the methods section. Others specified the distance of the 
walkway only. When the average walking speed of patients was also given, an average ambulatory bout was calculated 
and reported in this table. 

Study Methods Ambulatory bout (s) 
Geroin et al. [47] Use of GAITrite® 

electronic walkway 
7.92 

Muro-de-la-Herran 
et al. [46] 

Timed 25-foot walk test 7.50 

Hass et al. [91] Use of a 5.8m x 0.9m pressure sensitive walkway 5.10 
Din et al. [92] Use of GAITrite® 

electronic walkway and Body worn monitory (BWM) concurrently. 
7.0 

Hausdorff [93] Patients walking on level ground in the hallway outside a clinic 120-360 
Schlachetzki et al. 

[43] 
Self-selected speed on a 4x10m walkway. Patients asked to walk 10m, turn 

180 degrees and repeat until a total of 40 meters were covered. 
41.03 
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Therefore, it is evident that a large proportion of the 
current literature would struggle to present valid and 
accurate gait parameters for PD patients due to 
heterogeneity in ABs and the large proportion of 
shorter ABs. There is a need for research studies 
measuring gait parameters over longer ABs in free-
living contexts. In summary, the field of 
spatiotemporal gait analysis requires a great deal of 
optimization with standardized testing methods. For 
example, studies which define minimum walking 
length or duration and a great volume of research 
studies which adhere to these regulations before data 
can be pooled and meta-analyzed. 

Artificial intelligence  

Distinguishing healthy and pathological gait has 
proven to be challenging and the literature shows that 
mathematical [59,60] and statistical techniques 

[61,62] are popular due to their simplicity. However, 
mathematical transforms provide limited insight as 
they rely solely on univariate signals and data 
processed from wavelets, whilst statistical techniques 
assume normal distributions which tend to 
oversimplify the complex non-linear relationships in 
gait data [63,64]. In contrast, recent applications of 
machine learning (ML) in gait analysis, a special 
subset of artificial intelligence (AI), have shown their 
ability to model non-linear multidimensional data 
whilst being versatile in incorporating new data to 
improve accuracy of predictions [65,66].  

Use of AI in gait analysis  

The workflow in classifying healthy and pathological 
gait can be broken down into 5 key stages as shown in 
Fig 6.

 

 
Figure 6: Summary of the workflow in classifying pathological and healthy gait. PCA = principal component 

analysis, GA=Genetic Algorithm, HC=Hill Climbing. SVM = Support vector machine, NB = Naïve Bayes, ANN = 
artificial neural network. 

 
Feature determination and normalization  

Feature determination involves the extraction of gait 
‘features’ such as gait velocity, cadence, step-time, and 
other spatiotemporal metrics. Variations in gait data 
due to patient height and weight can largely be 
corrected via normalization and has been shown to 
improve the classification accuracy in some ML 
models [67-69]. Normalization has been investigated 
as a function of height, stride time and body weight as 
seen in Table 3. However, there is no clear consensus 
in the literature regarding the most beneficial 

approach as the use of normalization is not necessarily 
correlated with greater classification accuracy. The 
highest accuracy with normalization is 97.9% whilst 
an accuracy of 100% was achieved without 
normalization (see Table 3). This could be because 
numerous factors are changing between models. For 
example, cross-validation, feature selection and 
machine learning techniques have changed. Further 
research where all other factors other than 
normalization methods are controlled variables, will 
allow researchers to determine its utility. 
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Table 3: Summary of the application of ML to clinical conditions in the current literature. PCA=Principal 
Component Analysis, LOO= Leave one out, SVM=Support vector machine, ANN = Artificial Neural Network, 
NB=Naïve Bayes. ‘X’ represents studies where normalization was not applied. 

Study Distinguishing 
Condition 

Normalization Feature 
selection 

Cross-
validation 

Classification 
model 

Model 
accuracy 

Eskofier et al.75 Balance impairment Stride time PCA LOO SVM 95.8% 

Khandoker et 
al.80 

Falls × HC LOO SVM 100% 

Begg et al.81 Young vs Old × HC 3-fold CV SVM, ANN 83.3%, and 
75% 

respectively 
Begg and 

Kamruzzaman6

9 

Young vs Old Body weight HC 6-fold CV SVM 91% 

Pogorelc at 
al.82 

Back pain Height PCA 10-fold 
CV 

SVM, NB 97.9% and 
97.2% 

respectively 
Study Distinguishing 

Condition 
Normalization Feature 

selection 
Cross-

validation 
Classification 

model 
Model 

accuracy 
Eskofier et 

al.75 
Balance impairment Stride time PCA LOO SVM 95.80% 

Khandoker et 
al.80 

Falls 
 

HC LOO SVM 100% 

Begg et al.81 Young vs Old 
 

HC 3-fold CV SVM, ANN 83.3%, and 
75% 

respectively 
Begg and 

Kamruzzaman
69 

Young vs Old Body weight HC 6-fold CV SVM 91% 

Pogorelc at 
al.82 

Back pain Height PCA 10-fold 
CV 

SVM, NB 97.9% and 
97.2% 

respectively 
 
Feature selection  

Spatiotemporal gait analysis involves many features 
and produces a multitude of data. Feature selection 
aims to optimize the performance of the ML model by 
selecting the most relevant features with maximal 
separation between classes to ensure the model is both 
time and cost-efficient [70,71]. Methodologies fall 
under three main categories: filter, wrapper, and 
embedded methods. Filter methods are the least 
computationally intensive as they evaluate the dataset 
without evaluating the performance of the ML 
classification model [70]. Wrapper methods are the 
most computationally intensive as they evaluate the 
dataset and select features tailored to the performance 
of the ML model [70]. Embedded methods consider 
both the dataset and the performance of the model 
with the advantage of being much less compu-
tationally intensive than wrapper methods [70].  

The most common feature selection methods used in 
gait analysis are Principal Component Analysis (PCA) 
a filter method, Genetic Algorithm (GA) a wrapper 
method, and Hill-climbing (HC) an embedded 
method [72-74]. Upon analysis of the literature, PCA 
which is the most basic and computationally simple 
technique, provides the most reliable results [75] 
(model accuracy >95%) (see Table 3). Theoretically 
speaking, HC is expected to be quite promising as an 
embedded method and has been highly successful 
(>96% accuracy) in heart monitors [76]. However, it 
still provides relatively low classification accuracy 
(75.5-83.3%) [69] with spatiotemporal gait data, 
showing that its use has not yet been optimized to gait 
analysis. Further research is recommended to realize 
its potential in clinical gait analysis.   

Cross-validation  

Cross-validation (CV) is used to evaluate the 
generalizability and external validity of findings by ML 
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models by splitting data into training subsets used to 
train the ML model and a validation subset which 
seeks to validate the model [69,74,77]. Proper 
implementation of CV techniques is known to 
evaluate overfitting by measuring a quantity known as 
the root mean-squared-error in as it pertains to 
predictions made [73]. Most common CV techniques 
include the k-fold and leave one out (LOO) method. 
K-fold techniques randomly partition data into k 
subsets and k-1 subsets are used as training subsets, 
whilst the remaining one is used to validate the model 
[69]. LOO methodology uses the same concept as k-
fold except that it is not random as data in each subset 
belongs to an individual participant.  

Classification  

Support vector machine (SVM), Naïve-Bayes (NB), 
and Artificial Neural networks (ANN) were by far the 
most common ML models used for classification 
purposes in the literature. SVM utilizes supervised 

learning methods to compute a hyperplane with 
greatest separability between the analyzed classes [69] 
whilst NB utilizes the Bayes theorem and assumes that 
all features are independent to create a probabilistic 
model [78]. Finally, ANN’s feature a feed-forward 
networks where multiple nodes ‘synapse’ upon each 
other in a layered system, and rely on a ‘transfer-
function’ for forward propagation and classification 
of pathological gait [79]. Clearly, SVM has shown the 
greatest success with model accuracies as high as 
100% [75] (see Table 3). It is also the most used ML 
model [75,80-82]. NB has been featured sparingly in 
the literature, and more papers featuring this model 
are required before its utility can be determined. 

Model evaluation  

The literature has consistently used some or all of 
three metrics: accuracy, sensitivity, and specificity to 
evaluate the ML models and these are summarized in 
Figure 7.

  

 
Figure 7: Overview of metrics used to analyze machine learning models. TN = true negative, TP=true positive, FN=false 

negative, FP=false positive. 

 
In summary, the combination of Principle 
Component Analysis and Support Vector Machine 
are the most reliable feature selection methods and 
ML models respectively when evaluated in terms of 

classification accuracy. Currently, k-fold CV is the 
most valid, with higher ‘k’ numbers indicating more 
iterations, culminating in greater accuracy [82]. 

 

 
Figure 8: Metaemotion the MetaemotionC© (MMC) inertial measurement unit (IMU) developed by Mbientlab Inc. 

pictured as it will be fitted on the sternal angle of patients. Figure taken from Betteridge et al [94]. 
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Conclusion and rationale 

The field of spatiotemporal gait analysis is very much 
in its early days, and the application of ML models is 
even further in its infancy. Whilst the literature has 
shown that the combination of the two can produce 
a very powerful diagnostic tool, it requires significant 
further research so that it may be optimized for day-
to-day clinical use. Current research is greatly 
heterogenous amongst the various pathologies 
explored and data-analysis techniques applied and 
lacks the repetitions required to make reliable 
conclusions. Furthermore, the use of ML models has 
not been optimized for any one pathology. As such, 
study aims to focus on a single pathology, Parkinson’s 
Disease, and comprehensively explore the utility of 
machine learning in distinguishing healthy and 
pathological gait based on spatiotemporal gait 
metrics. Further studies should systematically repeat 
this type of investigation not only for Parkinson’s 
disease but for other gait altering pathologies. 
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